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ABBTRACT

The preéance of systematic effects in level{ing may be
revealed through regression and data series analyses of
various kinds of discrepancies among the levelling
observations. Regression analyses aid in the developement
of deterministic models relating the discrepancies to
various arguments describing the state under which the
observations are performed. Different data saries may then
be constructed and analysed with f@ﬁpect to the same or
pther arguments in order to provide an assessment of the
effectiveness of the regression model in terms of both
unaccounted for effects and £he mathematical relationships
descriing the modelled effects. Deterministic
felatianships among the residual series are expressed in the
argumanﬁ domain (autocorrelation functions) and frequency
domain {(spectral density functions). Twe methods to compute
autocorrelation functions from unequally spaced data series
are developed. The first is based upon the interval
Eztimafiﬂn of the expected value of the products of the
discrepancies while the second uses the inverse Fourier
transform of the spectrum of the series., The spectra are
computed using the lgast-squres technigue developed by

Vani el [197113. Application of the techniques to both

Siﬁulated and actual levelling data show that both
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regrasssion and data series analyses can be used to model

and/or diagnose the presence of systematic effects within
levelling results., This allows one to quantify the way
errors propagate within levelling lines and thus to qualify

systematic errors.
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Chapter 1

INTRODUCTION

The recent applications of precise geodetic levelling to
the determination of natural ground movements have taxed the
precision of this conceptually simple ée:hnique to its
present limits. The detection of vértical crustal movements
and s@a surface topography have posed the greatest problenmns
in this respect. For these applicatimnz it is reqguired to
resolve very small vertical displacements of the order of
centimeters over distances of tens of kilometers. It is
often impossible to distinguish between actual elevation
chanpes and errors inherent in the levelling process.

By the nature of precise levelling it is reqguired to
combineg a large number of individual mneasurements to obtain
the élevatimn difference between two points. This, as
pointed out by many authors (e.q. Alberda L192743), is in
opposition to the fundamental ideas of gemdésy since one is
warking from the part to the whale rather than vice versa.
ﬁbviou&alyy any non—random errors present in the levelling
‘nbservaticns will adversely accumulate over long distances
and could seriously degrade the levelling results. The

errors may he insignificant for normal geodetic and




pngingering projects where distances are smaller. However,
pver the longer distances involved in the above mentioned
grientific applications such errors can prodﬁce misleading
results.

It is the object of this thegis to show that the
presence of non-random or systematic errors in levelling
observations maybe revealed through autocorrelation functions
or their spectral! counterparts. Furthermnre,lit is shown
that a multiple linear regression analysis can be used to aid
in the modelling of the effects and that the autocorrelation
and spectral density functions can be used to assess the
effectiveness of the models. This work expands on the
initisl applications of date series analysis to the
assessaent of systematic errors in levelling pErfmrméd iy
Vanidek and Craymer [1983,198413.

This thesis does not, however, pretend to provide a
complete discussion of data series anaiysig as applied to
gepndetic levelling. It is merely intended to set the basis
for continued work in this area. As such, a review of ths
fundanentales of data series analyzis are presented along with
results of tests with both simulated and actual levelling
data.

Chapter 2 outlines some of the evidence for the

existence of non—random errors in levelling. Statistical

analyses of levelling results, particularly the use of

correlation, and examples of the presence of systematic

effects in levelling are given. Chapter 3 reviews the basic




roncepts of data series analysis with applications to
ievelling. The applications of regression analysis to the
problem of modelling the deterministic arrmr-cmmponents and
the uses of covariance and spectral density functions in

their assessment are detailed in Chapters 4, 5 and &. The

remaining chapters report the results of the analyses of
simulated data, the 1978 F.R.6. Oberharz levelling network
and two (1921 and 1979/80) Bwiss Castione - Péssn del San

Bernardino levelling lines. Finally, some conclusions and

recommendations {for further work complete the main body of

this thesis. Appendix A presents all of the results

{computer plots) of the analyses of the levelling data.
These were too numerous to include within the text. Appendix

B describes the computer programs smployed in addition to

providing souwrce lListings.




Chapter 2

ACCURACY AND SYSBTEMATIC EFFECTS IN LEVELLING

There are many examples of prablems experienced with the
results of precise levelling, arising gither from comparisons
with other technigues or from the apalyses of their internal
accuracy. This chapter reviews a selection of this evidence
beginning with some of the statistiéal analysss. Before
this, howsver, hrief.definitionﬁ of the types of errors and
their classifications are necessary. PMore rigorous

definitions will follow in the next chapter.

2.3 _CLASEIFICATION OF_ERRORS

Errors bhave traditionally been clagaiﬁiﬁd as either
blunders, random errors or systeaatic errors. Blunders are
ganeraily easy to detect if they are relatively large but
very difficult if they are relatively small. The common
causes of this type of error are [Rappleye, 19481:

1. incorrect rod scale and micromeber readings,

2. undetected distwbanee of bench marks,




. reversing the recording of backsights and foresights,
4. swapping of figures when recmrding.the'rnd readings
fi.2.y 243 vs. 234)
Repetition and circuit closures afford the best means of
detecting blunders.

The distinction between Eandnm and systemalic errors is
absolutely subjective and thus has long been a point of
contention among many geodesists. In general; systematic
errors are a result of some factors that influence the
ohservations in a deterministic way. Bystematic errors,
therefore, behave according to definite functional relations
hetween the ohservations and influencing factors. Incomplete
knowl edge of the factors and models, howaver, make this type
of error difficult to remove. It may be said that in almost
any kind of observation there always remains same residual
systematic error, the significance of which depends upon the
nature of the measuring technique.

Random errors, on the cother hand, are not considered to
agbey functional models. Inﬁteaé, they are described by
stochastic models which attempt to statistically account for
the observed variability. Random errors are usgally
considered to be statistically independent aﬁﬁ te follow the
Gaussian probability density function with a zero mean.

In keeping with stetistical terminology, it is more
proper to refer to systematic errors as being completely

statistically dependent and to random errors generally as

completely statistically independent. A deeper discussion of




this will be presented in the following chapter.

2.2 ACCURACY ANALYSIS

The most obvious method of inferring the presence of
systematic levelling errors involves a statistical analysis
of the levelling results themselves. Correlation between
conditions under which the levellings were performed (g.g.
topography) and the discrepancies between levellings is often
used in this regard.

This chapter reviews some of the existing methads of
accaunting for the presence of systamati:'é?fects, baeginning
with the pioneering work of Lallemand in 1912 and ending with
the concepis proposed by Lucht £19721 and further developed

by Fawaz [198131 and Vanicek and Grafarend [19801.

2.2.1 Prior to 1912

The sxistence of systematic effects in levelling was not
formally recognized prior to 191Z. Levelling errors were
ascsumad to be atatistically independent. Any systematic
effects present were considered to have been cancelled in
deriving the mean elevation difference or by properly

designed field procedures. Under this assumption levelling




designed field procedures. Under this assumption levelling

errors propagated as statistically independent errors (i.e.,

as the sum of the variances of the individual measurements).
In order to facilitate comparisons of different
ievellings, the accuracy of levelling lines were often

~
pxpressed in terms of the variance (01“) of a levelled

elevation difference along a distance of 1 km, i.e., the
standardized variance. Under these assumptiuns, the variance

(Gdhz) of a levelled elevation difference (df) over a

distance I is

2 2
Ydb 91
Estimates of oy were generally derived from circuit

misclosures (»), the discrepancies (d) between the forward

(1) I .

ared backward runnings of sections of length & ar the
discrepanciss () between the forward and backward runnings

of lines of length L. These are given by Lucht L[19721 as

2 2
‘-g z
(2 9y N(m JLY o
2 g2
(3 o2 = Ly s oan,
(4) 012 = T(d°/S) / 4n .

where n and N are the number of sections and lines,
respactivel y.

Comparisons of oy computed zeﬁarately from sections,
loops and circuits frequently did not agree, however.

Moreover, o, from circuits were significantly larger than oy

i

from lines which, in turn, were larger than o from sections

fLucht, 19721. This fact inspired the suspicion of systematic

errors in order to explain this phenomenon.




2.2.2 Early Methods Of Assessing Systematic Errors

The first treatment of systematic errors in levelling
was performed by Lallemand in 1912 and later improved by
Basschlin, Rune and Vignal [19343. Lallemand defined
systematic errors as propagating in proportion to the
levelled distance so that the total probable systematic error
() for a line of length L was
iS) 5 = siL .

where = the probable systematic error per kilometre, is

1?
considered to vary qnly randomly f;mm one section to another
LBraaten 2t al., 19501.

Many investigatmré, howaver, point to the fact that 5,
varied systematically with the average length of line. This
led to Vignal®s reclassification of errors as either "erreurs
pantophanes” (errors that act everywhere - i.e., random) and
Yerreurs aprophane" (errors‘that act only over large
distances). By this definition, the propagation of "erreurs
aprophana" depended on whether the distance L was greater
than some specific value 7. If L was greater than Z these
aerrors were considered to behave randomly and thus in
proportion to L1/2. If L was less than Z the total probhable
‘systematic error was given by
1/2

(6) 5= s (L) L .

whers sl(L), the probable systematic error per kilometre for




the distance L, varies from 5y for L= to zero for L=0.

The resulting formulae of Vignal wefe adopted by the
I.8.5. in 1948 [cf. Braaten st al., 1950) and have not yet
been replaced in spite of many shortecomings with  -this rather
artificial construction of systematic errors. However, the
- formulae are not presently used by any countries,

Entin £19521 further developed Vignal’s cancepts by
classifying levelling errors as random errors, errors that
are systematic only over short lines and errors that are
systematic over long lines. He also praoposed to analyse
other differences between measurements in addition to the
usual discrepancy between forward and backward runningsa.

A central concept in the international formulae and in
almost all resgarch in levelling is tha use of weights to
homogenize the data prior to analysis. (s Alberda £19741]
points out:

*"This weighting reduces the interpretability

of parts of the research done by several authors.

Weights can be well defined as quantities inversely

proportional to the variances of chservation

variates in the case that these are not

caorrelated. When assigning a priori weights which

areg not clearly defined in relation to the

variances, one introduces & subjective element into

the analysis, because one makes implicit

assumptions about the matter to be investigated.®
The subjective assumption often made in levelling is that the
observed elevation differences, usaed in computing the

discrepancies, are uncorrelated (i.e., statistically

independent) and can be weighted equally.

The praoblems with these methods were pointed out soon




atter their adoption by many investigators (e.g. Waalewi jn
£19551, Wassef (1955, 19621, Muller and Schneidear [19681,
Sheruah 19701, Chiarini and Pieri [1971}, Bomford [19723,

Lucht [19721).

2.2.2 Applications of Modern Statistical Methods

Realizing the inadequacy of the classical approach to
systematic effects in levelling, the concepts of systematic
grrors ware reformulated on tha pasis of modern statistical
techniques in a series of papers by Wassef [1935, 193%, 1962,
1974, 1976, 1979, 19831 and Wassef and Messih L1959, 19621
shortly after the adoption of Vignal's formulae by the
1.A.G.. In their analyses they employ standard statistical
techniques to tesf for linear correlation [Wassef, 1955,
195%, 1962, 19741 and normality and homogeneity [Wassef and
Messih, 1959, 194601 among the discrepancies.

In the former series of papers the discrepancy (d)
between the forward and backward runnings of a section is
decomposed into a constant (¢), an error (k), which is
sonehow associated with the levelling lines, changing from
one line to the other but remaining cmnﬁtant'fmr one and the
same line, and a random or stochastic component (e(0,g)) of
zero mean and standard deviation o [Wassef, 19741. That is,

for the j~th section in the i-th line,

(7} d. =+ k., + e, .
ij i i

Lj




Estimates for the variance of ki, eij and the mean section
and line differences are derived in Wassef [19462, 19741,
The above discrepancies were standardized by dividing by
the length (Sij) of the section. Thus the model for the
standardized discrepancy (”i°) for the j—th section in the
J
i~th line becomes
(8 w, =4d. [ &,
ij ij ij
= cfS, + k. /8, + e. /5,
ij i"7ig i; " Tij

1/2’

= ¢* + k¥ 4 e(O,o/Sij .

Dther standardization schemes have also proposed. For
example, Lucht [19721 standardizes the observed discrepancies
by dividing by the square root of the section length. As
pointed out by Alberda [19?93,nhnwever, there are no concrete
reasons for standardizing the discrepancies in this manner.

Wassef énd Messih [19401 admit to this subjective choice
of 3 standardized discrepancy and actually refer to it as the
discrepancy per kilometre. Tests of normality with
standardized discrepancies per kilometre from the Nile Delta
net show significant leptokurtosis (i.e., distributions with
sharp peaks and long tails) largely due to the remaining
heterogeneity in the standardized discrepancies.

In an attempt to determine a functiunal relation batween
the discrepancies and section lengths, Muller and Schneider

[19481 have performed a regression analysis and found that a

function of thea form
b

(&3] d = a &

fit the standardized discrepancies of the Frecise Levelling




of the German Democratic Republic very well and greatly
reduced the original estimated correlation (0.45) between the
discrepancies and section length. They found a value of 0.4
for ba

Others have also applied statistical technigues to the
problem of errufs in levelling but only the investigations of
Sherwah [19701 and Chiarini and Fieri [197i3 will be
mentioned. Briefly, Chiarini and Pieri [1971] analysed the
distribution of the discrepancies (standardized by the sguare
root of the section length) using nnnwéarametric tests. In
the course of their investigations fhey found thea presence of
asymmetry in the distribution. Sherurah [1970] also made use
of non—parametric techniques in analysing thé Third Geodetic
tevelling of England and Hales. Both investigations have
shown that the discrepancies were neither normally

gistributed nor homogeneous.

Although prior analyses had looked at &mrrelatimn in
levelling, it was not until Lucht’s [1972]1 investigation that
a systematic approach to correlation was made. This research
focused on the use of correlation coefficients for the

determination of the weights of the observations. It was

shown that correlation among the discrepancies is able to




explain the fact that Egns (2), (3) and (4) do not qgive
identical results. The advantage of the appreoach is that it
is free of any hypotheses (while for example, Wassef (19551
assumes the systematic error per Kilometre in any one line to
be constant).

The basis of this approeach is the consideration that
correlation among observed elevation differences is caused by
systematic effects. bLucht [1972]1 is able to account for this
dependency through the use of a fully populated covariance
matrix () of the cbhservations. Aaﬁuming all observables to

-

have identical variances (Uj_.1 = 01

can be given in terms of correlation cosfficients (ri_) by
. J

), the covariance matrix

CLucht, 19721

1y in

(1) € = BR=o0,“| roy 1 «eur

21 2n

r en 1 .

o1 Tnz t o

where R is the correlation matirx.

In applying this idea to levelling data, the following
two assumptions were made [Lucht, 197213:

1. the correlation coefficients in each of the
naighbouring diagonals are equal {i.e;, rikzrt, where
t=lk—il)

2. the correlation coefficients (rt} decreasse with
increasing t.

Under these assumptions, correlation coefficients for several

different types of observation variates were derived,




beginning with the observations at a single setup. These

results were applied to two levelling networks and also to

the problems of characterizing the accuracy of levelling
pperations.

Remmer [1975] has also investigated the role of
correlation in levelling using only the discrepancies hetween
the forward and backward runnings of sactiméﬁ. In addition,
he examines the distribution of the discrepancies for
normality. In the process of this later problem, he also
remarks, as do Wassef and Messih [1?é0ig that the presence of
outliers in the data significantly élters the distribution.
In the correlation analysis a highly significant correlation
coefficient of 0.73 was determined betwsen the forward and
backward runnings of sections. The cause of this correlation

was ascribed to a large undiscovered systematic error, a

substantial part of which he attributed to étmmspheric
refraction. It is also interesting that in contrast to Lucht
(19721 no evidence of correlation between neighbouring lines
was found.

Further generalizations of the role of correlation in

levelling were developed by Vanifek and Grgfarend £19801 (ses
also Vanifek and Krakiwsky £i9821). They ghﬁw that the
prnpagétinn of statistically dependent (i.e., systematic)
errors arise from the form of the covariance function
governing the statistical dependence. They note that the
traditional laws of propegation of completely statistically

independent srvors and completely statistically dependent




errors are the lower and upper bounds, respectively, of all
possible laws. That is, the variance (Udﬂ)z) of the levelled
gplevation difference of a line of length L is bounded by
tvanf{éek and Grafarend, 19803

an o <o 2 < o B

For the case of partially statistically depgndent
vhservations, the covariance of the section elevation
differences may be derived, under Lucht®s [1972]1 assumptions,

from the covariance matrix of the observations to give

tVanifek and Grafarend, 19803

n—1
2 = ) . .
(123 G'dﬁ —-01 En+22(n 1)r‘t-:l -
=1
Mote that
KA = ] - = { —~ 3
(1% ry rij rji ] t li—3t .

Following the method of Lucht [19821, Vanifek and
Grafarend L[1980] use a continuous covariance function
{standardized by 012) to represent the covariance matrix

e h) of the levelled section elevation differences. Only

o
single parametric (p) non-negative covariance functions have
been used in the investigations of Lucht L[19727 and Vani Cek
and Grafarend C19801. These are also limited to one argument,
tL~L’I; the distance between the sections which describes the
rrelative locations (i.e., proximity) of two stations.

Vanifelk and Grafarend [19801 derive the following integral
for the propagation law:

2

(14) ) w

o 2.?5#cmv(p'lL"L’l) dl. dt?
di 1 00 ? St

- 15 -




Two examples of such a covariance function are given in
vanidek and Grafarend [19801.
It is interesting to note that Egn (11) can he

refornul ated as

2, 2 _ b
oug 70y = L0 3 0.5< b <.

This has lead some geodesists (e.g. Muller and Schneider

{15

[12481) to postulate that the power law governs the
propagation of errors in levelling. Hnwevar,'as stipul ated
in Vanifek and Grafarend [19801, Eqn (15) does not depend
only on & but rather it is a function of baoth & and L.

The actual application of these concepts are mads
difficult by the fact that the covariance matirx is not
readily available. Vanifek and Krakiwsky [19821 have
outlined the steps to take for the determination of Qéﬁ from
a family of covariance funqtimns assuming one knows a priori
the standardized standard deviation'(cdhfoi> of the levelled
ling elevation difference. However, as pointed out by Wassef
19831, one may not know this guantity. Furthermore any
assumption of a particular valué would place an added
subjective element on the anlaysis.

Ltucht?s L1982 work was also continued by Fawaz [1281],
who applied the theory of stochastic prmcéﬁseé {(i.2., time or
data series) to the analysis of levelling results. Using an
autocorrelation function (of. Chapter 3) derived from
temperature observations and combining information on mean

sight length and mean slope, he developed formulae for hetter

estimates of the correlation function ENiemeier, 1983].




It is the generalization of Fawaz’s [1981] work on the

application of the theory of stochastic processes (i.e., data

sries analysis) on which this thesis is based. This was

foreseen by Vanitek and Grafarend [19801 who stated:

*One generalization of the technigue presented
here comes to mind: we started by assuming (in
accordance with the custom in geodesy) that the
dh’s depend on only one Lvariablel, I [=L-L71. Thus
the whole technique is geared to gquantify the
statistical dependence of db on 1. One should be
able to look into statistical dependence with
respect to various other parameters, €.0Q.s
tenperature, time and height itsel+"®

Praeliminary research into this idea has begun tvani ek

and Craymer, 1983, 19841. This thesis therefore attempts to

provide the fundamentals required gor these analyses and to

report the results uf more recent applications to simulated

and actual levelling data. This begins in the following

chapter by outlining some of the basic concepts involved in

data series analysis.

2.4 EVIDENCE_FOR_THE_PRESENCE_OF SYSTEMATIC ERRORS

There are many examples of problems with levelling

results throughout the world, all of which suggest the

presence of significant systematic errors in the resulis of

levellings. Perhaps the most striking example of this

problem is seen in the discrepancy between two Trans-Canadian

levellings performed in 1915 and 1965. As one can see from




Figure 1 there is a steady accumulation of the discrepancy
along the full length of the line. The total observed
discrepancy was 2.14 m while the allowable {(based on
statistically independent discrepancies) was only 0.31 m.
This suggests the existence of highly significant sources of
systematic errors within the levellings. The different
conditions and procedures under which the levellings were
performed (i.e. railwayg 1915 and paved roads in 19465 are
probably the cause of such systematic effects.

Evidence for the presence of systematic effects in

levelling has alsc been found on both coasts of the United
States. Here, geodetic levelling pxhibits dramatic

di sagreement with steric levelling and even itseld whan
determining the slope aof the sea. One of the greatest and
most widely publicized of these discrepancies occurs along

the California coast. A6 number of explanations have bheen

offered, all of which implicate unaccounted for systematic
grrors {(e.g. Sturges L1967, 19741, Balazs [19731, Balazs and
Bouglas 19791, Brown and Reilinger [1927%1, Kumar and Soler

£1980]1 and Castle and Elliott [19821).

The apparent vertical ecrustal movements suggested by
repeated geodetic levellings in areas expected to be
tectmnically stable have also raised further guestions
_ragarding the accuracy of levelling. The most notable of
these covers an srea in southern California known as the

"Palmdale Bulge”. Although it igs a tectonically unstable area

in the horizontal dimension, there is no geophysical evidence
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for vertical movements. Repeated levellings, however,
indicate a relatively large vertical displacement. Many
investigators have argued for and against the idea that the
observed vertical movements are an artefact of systematic
grrors contaminating the results (e.g. Castle et al. {19743,
vanifek et al. £19801, Jackson et al. [19801, Strange

£19811, Mark et al. [19811 and Holdahl [19831).




Chapter S

DATA BERIES

Observables can generally be regarded as'a series of
measurements in time or space. A greater abstraction may be
made by considering observations ordered with respect to any
variable describing the state of the measuring process.

Data series may be classified as either continuous or
discrete processes. For example, the accumulation of
discrepancies between forward and backward runnings iﬁ a
levelling line would be classified as a discrete process in
space. On the other hand, the tempqral variations of heights
due to vertical crustal movements is a continupus process in
time. In geodetic practice one is generally able to obtain
only discrete samples of continuous processes.

Observations may also be considered to be
multi-dimensional. That is. the observations may be
considered as a data seriags 5imu1tanemu91§ oﬁdered with
respect to more than one variable. A multi-dimensional data
series of discrete observations (li) may then be represented
in gensi-al by
(16) {Ii(a_), 3 = 1,N}

3
where a, are the values of the variable or argument with




respect to which the series is ordered. In vector form this

would be given as

- T
(3173 ii = (li(ai)’ Ii(a2)""’ Ii(aN)) v

For the analyses to be presented here, only one variable at a

time is considered.

If more than one type of observation is also to be
considered, all observations can be combined into an array
(L), where the rows of the array correspond to data series

for the different ohservations, i.e.,

e ey

Ii(ali) Ii(aiz) “ea Ii(aiN)

12{a23) Iztazz) - Izlazm)

- -
- -

18y L =

In(ani) In(azn) s In(anN} -

Obviously such an array of all chservations would be

extremely large for general applications in geondesy (e.g.
triangulation, trilateration, traversing, levelling, etc).
To simplify the data handling, one normally determines a
representation value for each data series, thereby reducing
the observation array L to a vector I. The expected value

ECLl] i customarily employed for this.

z.1 DECOMPOSITION OF THE OBSERVABLE

The expected value of the observabls may be conputed

from some deterministic model describing the expected




hehavior of the series. However, this model will probably
not describe the series exactly. A stochastic model is used
to account for this lack of fit. Thus, the obhservable li can
be decomposed into a deterministic or trend (ti) camponent
and a stochastic or error (ei) component. Neglecting for the
moment the dependence of Ii on any particular argument, the
observable can bs given‘by

(1% Ii = ti e .

The trend may also be decomposed into two components:
the pxpected value of the chservable (E[Ii]) and the
systematic trend (Si). The systematic component describes the
variation of the cbservable as a function of some variables
(a) that were either neglected or improperly accounted for by‘
the model for the expected value of the mﬁservable. This
component is often referred to as systematic effects. Thus,
(20 ¢ = ELZ 1 + § . (a) .

Similarly. the stochastic componsnt is also decomposed
in two sub-components referred to as the statistically
independent error (Ei) and the statistically dependznt error
(si)u Both of these components have a zero mean. However,
dug Lo - statistical dependence there is correlation between
the components of 5.

vani{fek and Krakiwsky (19821 consider the statistically
independent error to originate within the measwing apparatus
but not to be confined to it. On the other hand, they think
of the statistically dependent caomponent as originating

outside the measuring system and thus being related to a




special behavior of the observable in a particular milieu.
The statistically dependent component can also be thought of
as a residual error remaining after the modelling of the
daterministic trend or a combination of btoth of these ideas.
Therefore, s, may also be considered to he a function of some
variables £ that could possibly include some or all of the
variables a2, so that |

(213 e, = £, + 5i(Q) -

The total observable may then he given by

(22) .= ELI.] + & (g) + €.+ = (b)) .
b a 1= 1 1

This illustrates the depeﬁdence of éhe observable on the
independent variables a and b.

Az mentioned earlier, only one variable will bhe
considered at a time sao that a simple one dimensional data

series may be constructed by ordering the cobservations with

respect to a single variable or argument.

3.2 STATIONARITY AND_ERGODICITY

Different measurements of a data serieg will, in
genarai, not be identical. A single realization of a series
igs called a sample function or a sample record and the
collection of all possible saemple records is known as a
stochastic process [Bendat and Piersol, 19711. In this

terminology., a stochastic process can be defined as an
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FIGURE 2: An ensemble of sample functions forming a stochastic

process (after Bendat and Pierscol [19711)

"ensemble” of unigque sample functions. Such a random process
ig illustrated in Figure 2.

Stochastic processes can be also catagorized as being
gither stationary or non—stationary. 1 the ﬁtatiﬁtical
properties (i.e.,the statistical moments describing the mean,
variance, etec.) of the data series defined over the ensemble
are independent of the value of the argument, the process is

stationary. That is, the statistical moments describing the

bebiavior nf the sample records are identical for all values




of the argument. This is regarded by Jenkins and Watts

£19681 as a form of equilibrium or steady state of the data
series. A non-stationary process is one in thch this
condition is not satisfied. BSuch processes require special
techniques (cf. Bendat and Piersnl [19711).

Different degrees of stationarity exist. If the
complete statistical description (i.e., all possible
statistical moments) exist and are independen£ of the
argument, the process is said to be completely stationary.

If only the first few moments are independent of the argument
the process is weakly stationary. For normal Gaussian
processes the probability distribution is completely
described by the first two moments. In this casg,
stationarity in both the first~ (mean) and second-
(covariance) order moments infer complete stationarity.

Stationarity can be further classified on the bhasis of
ergodicity. If the statistical properties of a data series
taken with resﬁect to the arguements (e.g. argument averagaes)
are identical to the statistical properties taken with
respect to the sample records (e.g. sample averages), the
series is said to be ergodic. This allows $or a considerable
reduction of ohservations and cmmputationé wﬁan determining
the statistical properties of a stochastic process. For the
sake of simplicity, convenience and, most importantly, costs,
observations are generally assumed to be ergodic in geodetic

practice eventhough there may be substantial evidence to the

contrary.




Analogous o stationarity are the concepts of
hbmmgeneity and isotropy in space, where.the_spatial
argunents are used (i.e., arguments defining location and
prientation in space). Homogeneity implies the stochastic
process is invariant with respect to its location in épacel

whereas isotropy assumes the process to be invariant with

respect to its ordentation in space L[Grafarend, 19743. Only
if a process is both homogensous and isotropic is it then

also considered stationary

.3 DATA_SERIES_IN LEVELLING

Precise‘levelling is a conceptually simple and accurate
process. A detailed description Df‘thE instrumentation and
techniques can be found in Rappleye (19481 and Bomford
£19711. The purpase of the process is to determine the
elevation difference beatween twé points using a precise
geodetic level and two precise levelling rods. Each
levelling rod has two scales, one offset from the other by
about 2 m. At every setup one ubservatimg ié made to each
scale on both rods.

Precise geodetic levelling normally involves double
runnings of every section between twa adjacent benchmarks.
The rods are kept equidistant from the level in order to

cancel the effect of symmetrical refraction, defined by

- PF -




vanitek and Krakiwsky [1982]1 as the first-~order refraction

effect caused by a convex or concave sight path depending on
! the vertical temperature gradient.
Defining the notation to be used for further

devel opments, the observables ares

fL - reading on low scale of forward rod,
f” - reading on high scale of forward rod,
bL - reading on low scale of backward rod,

bﬂ -~ reading on high scale of backward rod.

From these hasic observations the elevation differences and
other quantities can be derived. These are
dhL - elevation difference at a setup derived from
the low scale rod readings
db,, - elevation difference at a setup derived from
the high scale rod readings

dh - average setup elevation difference

= (dh + dh,) /2,

#
d — setup discrepancy
= dhﬂ - dbL -
Comparisons of observations between the forward and
backward runnings can only he performed by deriving
quantities summed over a section (i.e., a line between two

ad jacent benchmarks) since identical turning points and

instrument setups are rarely used for both runnings. The -

following quantities are available for each section:




total elevation difference for the forward section
running (i.e., elevation difference between adjacent
benchmarks)
= 2 de a
B — total elevation difference for the‘backward section
running
= L de .
dff — average section elevation difference
= (F -~ B) 1 2,
I -~ discrepancy between {urwar& and backward section
runnings
= f + B ,
Notice that F and B are of opposite sign since they are run
in opposite directions.

The analyses performed iater in thig thésiﬁ are made
exclusively with the series of discrepancies U. This is
because the major sources of gystematic errors are readily
detectable in these quantities. Moreover, only section
results are generally available in computer readable {form.
Tha arguments with which the series may be ordered are
limited by only the type of auxilary data available. For
Examplé, a series of discrepancies may bhe constructed by
lnrdering the values with respect to elevation of the end of
the section, length of section, difference in dates of F and

B runnings, etc. The variable part of specific models may

aleo be used to test their effectivensss and most importantly




to estimate the constants parts. The models relating the

systematic effects to the discrepancies will be given in the

next chapter.




Chapter 4

MODELLING OF DETERMINISTIC COMPONENTS

Deterministic components in the mbservabie may be
estimated using & multiple regression model. Such models
estimate the trend of the observable, usually referred to as
the dependent variable, with respect to various other
phservations called independent variables or arguments. The
linear model is the simplest and most often used of these
models. This chapter reviews the general regression ﬁndal
and discusses some problems associated with it; notably
non—linearity, interactions betwaen_variables, heterogenaity,
dependence of variables, outliers and lack of normality.
Finally, the last section reviews some sources of systematic
effects in levelling and providés specific models for their
estimation.

It should be noticed that in the {framework of data
series analysis the removal of daterminiséic ﬁrends in a
series is analogous to the construction of a stationary data
series. That is, the presence of a deterministic trend of
the dependent variable would imply non-stationarity in the

series since its expected value changes with respect to the

independent variable or argument. If the trend is removed so




that the expacted value of the residual series is zero and

does not depend on the argument, the series is then

stationary in the first moment. Stationarity in the second

moment will hold if the variances and covariances are also

independent of the argument. This is often referred to

homogengity by many geodesists. A more rigorous definition

of homogeneity will be given in 4.3.2.

The general linear regression model is given in matrix

notation

(23

where,

s

S

i

o

L

by EhNeter and Wasserman, 19741

= fBx + € ,

]

vector of observations (nxl),

vector of regression parameters (pxl)l,

Vandermonde matrix of functions of independent
variables (nxp),

vector of error components as de+?ned in 3.1 {xi),
number of observations,

number of paresmeters .

The £ matrix has the {following form for the linear model




all - o m® al,p—_i

20) A= | 1ay «uoay

l_1 @4 " an,p—l_ .

where aij are values of the j—-th independent argument for the

i-th observation. The x vector is given by

T
(25) X = (xi, Xps eee s xp) "

Thus, for a single ohservation the linear model is
= -+ -
(26) 1, Xy 2, 4Xo * B XL * 2; p-1%p + e,
Applying the principle of the least-squares and assuming

i. the variables x are independent,
2. the error term g is a vector of normal random variables

with expectation ELel = 0 and variance-covariance

matrix Qe =¢1121 (I is the unit matrix),

the least-squares estimates for the estimated regression

parameters <§) can be shown to be [VanfEék and Krakiwsky,

19821

27 &= @'g, e tale, M

Since the expected value of e ié zero, it follows that

(28) ECZ1

Ax
and, assuming 8 is constant, the second assumption is
justified. The adjusted observations (zl.may.then be
predicted from Eqn (28) using 2 in place of x5 i.e.,
(z9y 1 =488 .

The nature of ECI] may be regarded as a response surface
(also referred to as a response function or regression

surface in statistics). Figure 3 illustrates two such
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response surface for the case of 2 independent variables. In
the analyses presented in this thesis the surfaces will be
hyper-planes since only multiple linear regression analyses

will be performed.

Often, one is faced with non-linear relations between
the dependent and independent variables. The general form of
the relation

(30 I, = f (@) + e, ,
1 X i

where the functional relation (fi)‘is nnnmiinear, may be
known & priori to exist. The linear model given in the
previous section may be applied to non—linear relations when
the function is monotonic, however, using a simple
transformation of the variables. For example, if it is known

thet the relation

- 2 3
(31> li = xi * xzaii + x3ai1 4 x4ail + ei

exits between the variables Ii and 2 .09 @ linear model of the
3

form

> v o x.a.. e,

T = ? -
(X2 Ii X, * X_&. 4 xsaiz P

1 2711
may be specified by letting

?
i1 ®it
2
iz’ * %5y
3
i1 -

a

2.7 = &
i3




This model will be referred to as a pseudo-linear model. It

must be pointed out, however, that a,

11’, .., etc. are no

iz

longer independent.

The pseudo-linear mn@el may also be applied to cases
where independent variables (aij) interact with each other.
That is, when the form of the régression model is

(I3 Ii = x, + X +

a . -+ + e
1 i

2%51 " Xz%io T ¥%11%52 i-

The pseudo-liinear model in this case would be given as

e ? Fd E
{(34) li Xy + Xod, 4 + X oy + x4a13 + e, s
whare
? e
51 51
a..' = a,.
12 i2
| . :
23 251%i2 -

The behavior of the response surface when variables
interact may be illustrated by comparing a responss surface
for non-interacting variableé with that for interacting
variables. Two such surfaces are shown in Figure 3. Note
that for interacting variablaes the shape of the curve for the
dependent variable as a function of a single independent
variable is the same and differs only by a constant offset.

Clearly, the shape of the curves are completely different for

interacting variables.




4.3 ASSESSMENT_OF _RESULTS_AND SELECTION_OF _ARGUMENTS

When a specific regression model is applied one is not
certain that the model is appropriate. Thus, an assessment
of the aptness of the selected model for the given data must
be made. This section provides tests for determining the
significance of the regression parameters and the model as a
whole. Methods of analysing the estimated error terms are

also reviewed.

4.3.1 Inferences about Regression parameters

~The variance-covariance matrix (QQ) of the ad;justed
parameters is obtained from the inverse of the normal

equations, i.a.,

e, lar”

=0 %'t .
=)

1

(35) Ca
X

However., one often does not know CB precisely. An estimate

)
(QQD o¥f QQ may be obtained by using an estimate (sn) for Ogy"

Thus,

2 = 3

= (xl) stxi,xz) sle-a stxi,xp)
2

5(x2,x1) 5 (x2) ceu s(xz,xp)

iy b2
48

(3&)

1

2
s(xp,xl) s(xp,xz) sea 5 (xp) .

berss =




fin interval estimate for i—-th parameter (xi} is then
obtained from its estimated stanﬂard deviation (sz(xi)) and
the value of the t-statistic with (n—-p) degrees of freedom.
At a probability of o the interval is given by [Freund, 19711
€37) X, = %i*’" t(1~a/2; n-p) sx;) .
Consequently, the null hypothesis

x. = Q
i

(382 HE |
can be concluded, at the o probability level if the estimated
t-statistic (£7) is less than or equal to the tabulated
valus, i.@., it

(I ti’ = Qi/s(xi) < E{1~-a/23 n—-p) .

The p—dinensional confidence region for all p parameters
may be pbtained in a similar manner. The sguation or
boundary defining this region ;5,.at the d level,

(40) (£~5)T§§n1(§~5) = p F(1- 5 p, n—=p) .

where F is the tabulated F-statistic. A test of the
gsignificance of all the parameters combined (i.e., a test of
the madel) would be given by Egn (40) with x = 0 . Therefore
(1) Fr = QTéﬁ"ig < p F(i~ 5 p, n-p) ,

where F? is the estimated F-gtatistic, would imply that all
parameters may be equal to zero at the leval of
probability.

Eventhough an estimated response surface may be
statistically significant by the above tests, it is not
assured that the model is appropriate. An often used measure

of the degres of association between the observations and

variables is the coefficient of determination {(Neter and




Wasserman, 10741. This is defined in terms of the total

variation of the observations amhng themselves and the
variation of the abservatians about the response surface.

PDefining the total sum of sguares (SS5Ta) by

42y  S8T0 = itziwf)z
= 171 - ni®

and the sum of squares of the errors (SSE) by
A
(43) SCE = L(1.-1I.)"
I 1
T
e

S A A |

where I is the mean value of the obsaervations anﬁ fi is the
regression estimate, the coefficient of detgrminatinn (rz) is
given by

44y 2 =1 - SSE/SSTO .

The coefficient of determinatinn can be considered to be
the proportional reduction of the total variation in the
chservations as a result of the model. The value is
therefore often expressed as a percentage. Obviously, all
phservations fall on the regression surface if r2 is 1
(100%). OUn the other hand i r2 =l0, the model does not
explain any of the observed variance.

Many researchers also look at the square root of the
cosfficient of determination, called the coefficient of
correlation (r). However, it is not easily interpretable when
there is more than one independent variable in the model.

in the analyses presented here only the probability at

which the estimated parameter become significant will be

given rather than the results of some hypothesis test. This




is obtained from the tables using the probability associated
with the computed test statistic.

Great care should be exercised when determining the
significance of parameters, particularly with regard to the
deletion of parameters based on the results of their
independent t-tests. For instance, strong correlation
betwsen. two variables could lead to a rejection of bhoth from
the model eventhough the role of either one may be
gignificant. To avoid such errors, only one variable at a
time should be deleted from the model. See Neter and
Wasserman (19771 for a more detailed description of this
problem.

The selection of the best set of variables is therefore
normally performed in a stepwise fashion. The first step
would involve the analysis of the model containing all
selected variables. The elimination of variables may then be
made based upon the significance of the t-statistic for each
variable. Only one variable should be dropped at any one
step due to the possible presence of correlation among the
variables mentioned above. This processs would continue
until only significant variables remained. This procedure is

sometimes referred to as backward elimination.

4,%.2 Problems with Regression Analysis

The preceeding methods of analysis are based on the




model in Eqn (24) that assumes the error terms () to be
normally distributed. However, this may not be the case in
practice. Deviations from normality in addition to
variations in the standard deviations among themselves may
reduce the appropriateness of the regression model.
Furthermore, the presence of systematic effects and outliers
may also seriously degrade model estimations.

An anlysis of the estimates (é) of the error terms
provides the best method of identifying these problems. This
estimate is derived from
45y &=1-1.

A variety of tests can be performed on the error terms
(cf. Spiegel [1941]1, Freund [1971]1, Neter and Wasserman
C19741, Edwards L[197%1), hmwevér, these wiil not be presented
here. It is the object of this thesis instead to show that
autocorrelation functions can be used for this purpose.

Visual examination of plots of the residuals versus the
independent variables is always useful, nevertheless. The
location of outliers and non—homogeneity of variances is most
pasily identified in this way. The latter is characterized
by a spreading out of the error terms as shown in Figure 4.
Problems with correlation among the error terms resulting
from departures from linearity are shown to be more quickly
identified through autocorrelation and spectral density
functions as described in the next two chapters.

The problem of heterogeneity of the variances may be

resolved if it is known how the variances propagate with
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FIGURE 4: Plot illustrating nonconstant error variances (after

Neter and Wasserman [19741)

respect to the variables. For example, it is often assumed
in levelling that the error (¢) propagates in proportion to

the square root of the distance (8) traversed, i.e.,

51/2

(46) (5> = e ;

where €q is the constant error per wunit of 5. If a
regresssion is performed, the error terms may be standardized
by dividing the whole model by 31/2. That is, Eqn (23) would

becomne

(47) 1’

i
e
4
o Ix
+
n
-
-

where

2 = (1,/58 s 12/3 9 sunm ,In/S

= i
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The problem in levelling is that the actual propagation

of errors is not known precisely. In fact the major purpose
of statistical analyses of levelling is to determine the form

of the propagation.

4.4 MATHEMATICAL MODELS FOR_SYSTEMATIC EFFECTS_IN_LEVELLING

Levelling is affected by many different types of
systematic effects. These rénge from ingtruhental effects to
environmental effects. This section presents a detailed
discussion of refraction and rod settlement errors,
considered by the author to be the most important in
leveiling. Other effects are also discussed but only in

general terms.

4.4.1 Atmospheric Refraction

It is a well known fact that a general stratification of

density exists in the lower atmosphere, the actual form of
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FIGURE S: Differential refraction effect (after Vanicek and

Krakiwsky [19821)

which varies according to atmospheric cnnditiuns. This
tauses light rays passing through different layers to be
refracted. There are a number of factors affecting the
atmospheric density gradient'near the graund} These ares:
i. intensity of sun’s radiation
! : 2. sun’s altitude; dependent on time of the day,
Z. cloud cover and type,
4. wind
5. slope; affects upward heat flux and height of sights
above the ground, .
6. aspect of slope; affects upward heat fluwx,
7. type of ground cover (e.g., vegetation, etc.); affects
} upward heat flux.
Refraction in levelling is a differential effect. When
levelling up slopes the forward sight passes through lower

layers of the atmosphere where variations in density are
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greater and thus is refracted mﬁre. This is illustrated in
Figure 5. The effect of refraction on the levelled elevation
difference is the difference between the amount of refraction
of the back and fore sights. For long sight lengths the line
of sight passes through more layeés of atmosphere and is bent
more.

The presence of the differential refraction effect is
often sought through correlation between topography and the
discrepancies (#). This is not very efficient, however,
because random diurnal and seasonal variations in
meteorological conditions -often re@uce the strength of any
correlations [Vanicek and Grafarend, 19801. Circuit
misclosures are also not very reliable indicators of
refraction affects. Levelling around a circuit generally
involves opposite slopes and therefore at least a partial
cancelling effect of the accumulating refraction error due to
its slope dependence.

The first and most commonly employed refraction model
for ievelling was developed by Kukkamaki [i19383. In the
derivation of his expressions the following three assumptions
were made regarding the condition of the athmsphere near the
grounds

i. refractive index of air is a function of temperature
only,

2. isothermal surfaces (i.e., atmospheric surfaces of
constant temperature) are parallel to the ground,

3. temperature variations near the ground can be
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represented by a temperature function of the form
t=a+bZ" s where ¢ is the temperature at a height Z (< 3
m) above ground and a, » and ¢ are constants.
Based on these assumptions Kukkamaki [1938]1 developed an
equation for the correction to be applied to a single rod

reading. This is given as [Kukkamaki, 12321

i

c—1 c

c
}/(22 —Z. ¥ 9

(48) R = cot’g dn dt (2571 /(cr1)-Z_Zrcz i

where
R — refraction correction to a single rod reading,
cntzg - angular slope of terrain,.
dn — variation of the refracti#e index of air with temperature

= —10"8(0.933-0. 0064 (¢-20°C))YB/760  (7O),

B -~ barometric pressure (mmHg),

o
€ — air temperature ( C),

dé — temperature difference at heights Zys and Ze

(=)
t,~t, (OO,

Zu - instrument height,

Z =~ rod reading,

z, - height of upper temperature reading,
z, = height of lower temperature reading,

c — exponent in Kukkamaki’s temperature function .

The refraction correction (8) to the levelled elevation
difference at a single setup is
.(49) R = Rb B Rf ”
where Rb and Rf are the single sight refraction corrections

for the backsight and foresight, respectively.

The parameter ¢ varies actcording to atmospheric




conditions. Fnr stable conditions (i.e., night time) the
temperature gradient and therefore ¢ are positive. Under
neutral conditions (i.e., dusk and dawn) the temperature
gradient and ¢ are close to zero. When unstable conditions
(i.e., daytime) prevail the temperature gradient and c are
both negative.

Kukkamaki [1938, 193%9] estimated valuaé for ¢ as a
function of latitude, month of the year and time of day based
on a long series of temperature measurements made in Britain
by Best [1935]. Kukkamaki [193%91] tabulated estimates of both
¢ and temperature differences based on Best’s observations.
Accarding to micrometeorological tﬁemry, a value of ¢ = -1/3
would adequately characterize unstable conditions in the
lower layers of the atmaaphere LAngus—Lappan, 197%1.

It has been argued., however, that Best’s temperatures
are generally not accurate for lower latitudes where the
sun’s altitude is much greater than in Britain. Recent
investigators have shown that temperature gradients in
southern California, for example, are 1.5 to 2.0 times
greater than those of Best (cf. Holdahl [198031, Strange
£19801 and Whalen [19801). This leads to a refraction
correction (using ¢ = ~1/3) approximately two times that
based on Kukkamaki’s [19391 tables. Whalen [19801 has tried
to account for the variability of d¢ with latitude by
expressing Best’s temperature differences as a linear

function of the sun’s altitude and local hour angle. In

southern California this produces temperature differences




about 1.7 times the tabulated values from Kukkamaki L[19391.

Application of Eqns. (48) and (49) to old levelling

data, where temperatures were not observed and the original
rod readings are unavailable, usually assume the following:
‘ i. foresights and backsights are of equal length,
2. terrain slope for foresights and backsights are equal,
3. instrument height is 1.5 m,
4. temperature differences can be'adequately modelled in
space and time,
- . € = —-1/3 in Kukkamaki’s temperature function properly
characterizes the temperature‘differen:es.
Under- these assumptions it can be shown that Eqn (49) reduces
to |
c+1 c+l

- 2 : g e B _
! (S0} R = dn cot™g dt,{(zb Zf Y/ (c+1) Zu (Zb Zf

)}/(zzc-zic) .

where

cnt2§ ~ average terrain slope for hoth the foresight and

1 backsight

| = s/(ZD-Zf) = s/czb—zn>,
5 — average sight length,

} Z, = backsight rod reading,

b

Zf ~ foresight rod readings .

Kukkamaki [19381 further simplified Eqn (50) by assuming

l
|
* the refraction correction at a setup to be linearly

proportional to the levelled height difference (dh) between
the rods. Thus the correction (R) can be related to that for

Z, = 2.5 m, Zo = 1.5 m and Z, = 0.5 m (denoted as R,) by

b f 2z

(51) R = db R,/2 ,

2
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' where db and 5 are in metres, d¢t is in °¢ and

1 c

1 )

(52) A =dn 2.5 0.5 /e 201537202, -2

= 0.0678 dn (m 2 °c”l) .
Here, dn has been computed using ¢ = 15°C and B = 750 mmHg .
If the temperature measurements are also taken at 21 = 2.3 m
and 22 = 0.5 m above ground, the Kukkamaki refraction
correction, in its simpliest form, is given‘by Eqn (51) with

A= -6.456 x 108 (m 2 %™y,

The main problem in applying this equation to old

i ' levelling centres around the estimatiuﬁ of the temperature

i difference at 0.5 m and 2.5 m above the ground. As mentioned
earlier, Best’s tables are not very reliable for the lower

{» latitudes. Holdahl [12811, however, pruvides an estimate of
d¢ based on various meteorological parameters. 0On the other
hand, Remmer [19B0] advocates the use of an average

L temperatuwre gradient for the area of concern. He considers

E | the temperature measurements to be too variable for accurate

| observation and that an average value of the temperature

‘ would be more reliable. In applying this idea, however, he

uses circuit misclosures to derive the average effect of

refraction. This could lead to problems due to the

cancelling of refraction correction when the terrain over the

levelled circuit is symmetrical. That is, refraction errors

occuring while levelling up a slope will tend to cancel with
those that occur while levelling down a slope.
The approach taken in this thesis is basically that of

Remmer’s [19801, except that the discrepancies between the

| AT




forward and backward section runnings are used instead of
circuit misclosures. The total refraction correction (RS)
over a section of length § and elevation difference d# is
estimated by using average values for the temperature
difference (dz), sight lengths (s) and setup elevation
differences (dS), i.e.,

(53) R_=% @ dE 2 dh ,

where

k

s = 8§/(2n),

db = dit/n,

n = number of setups in the seétiun -
Substitution for the mean sight length and elevation
difference in Egqn (53) gives
(54) R_ = A df aH (s/2m) % .

The effect of the refraction correction on the levelled
section elevation difference'far the fnrward‘(F) and backward
(B) runnings is then

(55) F

ECF1 + R, ,

ELFI + Ry ,

it

(56) B
wheré ELF1 and ELB1 denote the expected values of the
elevation differences and RF and RB are thg refraction
corrections for the forward and backward ruﬁnings
respectively. Therefore the sectiun elevation difference
(d#) is given by
7(57) dff = (ELFI-ELB] + RF—RB) /2

= ELdH#HT + (RF~RB)/2 ’

where ELdH] is thé expected section elevation differences and

. |



R. and R, are of opposite signs.

F B
Because the expected elevation differences are not
generally known, the refraction effect is sought through the

discrepancies () between forward and backward section
runnings. From 3.3, and neglecting all other effects,
(S58) n = E[F3'+ ECR] + RF * RB
= RF + RB -
since the expected value of the discrepancies is zero. This

is the model that will be used to detect the refraction

effect in the following analyses.

4.4.2 Rod and Instrumental Settlement

Vertical displacements of the level and rods may also
cause significant systematic errors in the levelled section
elevation differences and discrepancies. The effect is
dependent on ground conditions, the number of setups in both
runnings, the levelling procedure and work time. In many
cases improvements can be made by using suitably designed rod
bases, bench marks and levelling procedures.

Figure & illustrates the combined effect of rod and
inﬁtrument settlement at a single setup for the observation
procedure bL’fL’fH’bH’ where )

ELHI, ELFf] = expected values of f and b, respectively,

7 = settlement of turning point (back rod) during the

time elapsed between the last observation from previous




setup and the first observation of the current setup,
¢ = settlement of turning pint (back rod) during bL and

b, rod readings,

i

i = settlement of instrument during 7 and & rod readingss

assumed constant for both low and high scales .

& &
PO il B ﬁé = %
i L H ;
¢ ' ELflf ~f
| ] ’
| [
|
i
¥ b
| T ;
'; hep
gl

FIGURE &2 Rod and instrument settlement

From Figure 6 the individual rod readings can be
i expressed in terms of their expected values (expected in
| absence of settlement) and the three settlement parameters as

follows:

i

[ S b, = ELKl 4 T 4 i,

~— 4
b, = ECh] + r[;
f

H @

g, = f” = ELf1 .

The setup discrepancy (d) is then given by (cf. 3.3)
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(60 d = db” = dbL

= 2 - € .

The elevation difference (dh) for the setup becomes
(61) dbh = (dhL + db”) /2
; = ELdh] + T + ¢t/2 .
From Eqn (59) the effect of rod settlement on the
discrepancy (2) betweenkthe F and B runnings of section may
i ' be derived. GBiven the number of sections in the forward (nF)

and backward (nB) runnings the respective elevation

differences are

' (62) F = ECF1 + §(r+t/2) i

(63) B

0

ECB1 + §(r+t/2) 3

Letting T and € be the average values of the rod effects

[ gives
(44) F = ELF1 + an—1)? +“n;£/2 »
(65) B = ECBI + (nB—1>F + nR?/E 5

since there are (n—1) turning points in any section but only
i n setups. Thus the section discrepancy (N is
(66) D = ELD] + (nptn =27
| = (nF%éLE)T .
Both rod and instrumental settlement are therefore
detectable in the discrepancies. The former in ¢ and the
i latter in P. Estimates of the magnitudes of the effects may
then be computed and compared with actual tests of rod
settlement. One such experiment has been recently completed

by Anderson L19831. From his observations he has obhtained

empirical expressions for the vertical motion as a function




of time for a number of different supporting materials.

An exponential function of the form
77 h=ke+c
was used by Anderson L[19831. Here, A is the vertical
displacement of the rod or level, ¢ is the elapsed time and
k, @ and € are parameters to be obtained.

The estimated values for the.parameters for different
types of terrain and a conventional rod support are given in
Table 2 of Anderson [19831. For hard packed gravel the
estimated function is

68 b = 0.0198/a;0-0089% &

0.0274 (mm) ,
where ¢ is in seconds. Given the average times for the
levelling process from Table 1, the average rod settlement is

computed to be T=—0.025 mm/turning point and t=—0.012

mm/setup.

Koreal piccisr vod used 10 sinulate
eorrect vedght under usual field
conditione (braced)

Doe-second
theodolite

rod
support

AT o
Lt
Tatiidne

Tesl surface

FIGURE 7: Anderson’s method of measuring vertical motion of rod

settlemant (after Andgrson £19831)
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The design of the experiment, however, indicates that

the values should probably be slightly higher since, as shown
in Figure 7, the tripod is also resting on the rod support

thereby adding extra weight to the turning point.

TABLE 1: Average times for levelling observations at a single

setup (after Balazs [19831)

-f 17677

TIME (SEC)
| I §
] Back rod set 0
' - s
Instrument set 180
) S
b rod reading 225
Fore rod set . 270 S
L‘w
f rod reading 290 S
M ; & \
f rod reading 250
H s
| b rod reading 395
= r
' %

4.4.3 Other Systematic Effects

There are many other factors in addition to refraction
| and equipment settlement that systematically affect levelling

observations. Some of these are rod index errors, rod




graduation errors., rod dilgtatiﬁn, vertical movements of
benchmarks, imperfect operation of the compensator in
automatic levels and thermal effects on the level. A
complete review of all sources of systematic effects in
levelling is beyond the scope of thesis. Instead, a brief
discussion of the effects mentioned above wfll be given.

Rod index errors affect measured elevation differences
in a relative manner when two rods are utilized. The zero
point of each rod scale is slightly offset from its base
point and is different {for every rod. The measured elevation
difference at each setup is then in errar by the difference
of the rod index errors for the forward and bhackward rods.
This relative error cancels in the section elevation
difference when the rods are alternated as forward and
backward sights and an equal number of setups is used (i.e.
the leap~-frog procedure).

Rod graduation errors are a result of inaccurate
scribing of the rod scale graduations, scale shrinkage and
saging. The error is highly correlated with elevation
(Vanicek et al., 1980al. Calibration against an accurate
standard minimizes this error. The ac:uracy pf calibration
technigues is largely dependent upon the type of calibrator
and procedure used and varies from 1 to 100 ppm [Strange,
1982, Schneider, 19B41.

Rod dilatation is caused by the thermal expansion of the

rod scale when the rod is used at temperatures different {from

when it was calibrated. Although the coefficient of thermal




expansion is well known for precise levelling rods, errors

are introduced into the correction when measurements of air
temperature are used instead of the actual temperature of the
i rod scale. This can cause a significant error since the
scale temperature is often different from air temperature,
particularily under direct sunlight. The effect of this
error is similar to the calibration error and is also
correlated with elevation.

Vertical movements of benchmarks are usually very
‘ difficult to detect because of the small displacements
involved. The movements are caused by either crustal motion
(due to tectonic activity. ground water variations, etc.) or'
] settlement of the benchmarks Ekar;z et al;, 1974, Kakkuri,
| 19801. In a study of Finnish benchmarks Kakkuri [17801 found
| significant se#tlement of the order of 0.001 to 0.003 mm/day
i for various types of monuments. Crustal movements are
( generally very difficult to predi;t in many areas due to

their discontinuous behavior in space and time.
Finally, instrument errors are often considered to be
; relatively insignificant after performing a standard
collimation test (to determine the inclination of the line of
sight) and following specific field procedures such as
| keeping the forward and backward sights of equal length and
i shading the instrument from direct sunlight. Until recently,
however, another factor affecting only automatic compensating

l levels was often overlooked. This was the influence of the

surrounding magnetic fields produced by the earth and local

‘ . ‘ ) ]




anomalies (e.g. hydro—-electric transmission lines, railways,
etc.). The effect, first reported by Rumpf énd Meurisch
19811, is to alter the position of the compensator from the
vertical. The effect depends upon latitude and the azimuth
of the line with a maximum in the direction of the magnetic
poles. Errors can exceed 2.0 mm/km at middle latitude and is
even greater near the equator [Whalen, 19843. Although the
effect of the earth®s magnetic field is well known and
predictable (cf. Pelzer [19831), the magnitude is different
for each instrument thereby requiring individual
calibration. Moreover, the effect of local magnetic
anomalies is highly uncertain. Test are presently being
conducted by the United States N.G.S. in order to quaﬁtify
the behavior of automatic levels under the influence of

magnetic fields (cf. Whalen [19841).




Chapter S

ASSESSMENT OF ERRORS IN THE DOMAIN OF THE ARGUMENT

In practical applications the modelling of deterministic
components is never perfect. Residual systematic effects
often contaminate the stochastic component as indicated in
T.l. This usually results from the application of
incorrect models in the regression analysis and leads to
correlations among the error terms as a consequence of their
interdependence. To facilitate the discussion of these
errors they are decomposed into statistically dependent and
independent components.

Statistical dependence.between'data series values
ordered with respect to any specific argument may be revealed
through autocorrelation functions which describe the series
correlation in the argument domain [Rendat and Piersol,
19711. If the data series values are taken to be the
estimated residual errors terms (i.e., the sgfies values)
from a regression analysis, an assessment of the adequacy of
the applied model may be made by constructing a data series
ordered with respect to any argument thought to effect the

residual error terms. The presence of any correlation among

the error terms would suggest that the relation between the




residual error terms and argument has been improperly
modelled.

This chapter provides a description of autocorrelation
functions. In addition, it discusses estimatinn_prucedures,
smoothing techniques and descriptive parameters. Only

one—~dimensional data series will be discussed.

A data series can be described by its statistical
moments. For a continuous data series {e(a)}, ordered with
respect to the argument &, the k-th moment is given by
[Freund, 19711
(69) Etek(a)l ==*z ek(a)é{e(a)} da ,
where P{e(a)} is the probability deﬁsity function for the
data series values (i.e., the residual error terms) and the
integration is performed over all sample functions for
argument a.

The first-order moment is the mean (&). For the error
terms from a least-squares regression analysis with a
Gaussian probability distribution, this is zerno, i.e.,

(70) e = Efle(a)] = 0O .

The autocovariance function (Ce(a,a’)) is simply the

second—order central moment about the mean and represents the

covariance between e(a) and e(a’), where &’ is another value




of the argument. For the discrete case this is expressed as
[Bendat and Fiersol, 19711

(710 €_la,a’) = El(e(a)-E(a)) (e(a”)-E(a’))] .

Here, the expectation is taken over the ensemble (i.e., all
sample records) of the particular values of a.

For an analysis of the error terms from the regression
analysis, the above equation reduces to
(72) _ce(a,a’) = ELel{a)e(a’)] .

Notice that if a@=a2°’ these equations give the variance of the
series.

It is often more convenient to normalize the
autocovariance function, i.e.,

(733 R (a,a’) = C _(a,&") (£ _(a,a3C_(a”,a”)) /2
e e e e

This is referred to as the autocorrelation function.

Obviously, for a=a’, Re(a,a)zl.

It should be rememberéd though, that the autocorrelation
function reflects only the linear dépendence between &#(a) and
e(a’). 1f there is a perfect linear relation between the two,
Re(a,a’) will have a value of 1.

The concept of autocorrelation is analogous to that for
the correlation coefficient where the degree of linegar
association is sought between different aﬁgu@ents. This is
referred to formally as cross—-correlation. The
cross—corelation function may be defined in exactly the same
manner as autocorrelation with the exception that the second

e(a’) term in Eqns. (71), (72) and (73) are replaced with a

different argument (cf. Bendat and Piersol [19713, Box and




Jenkins C19681). This thesis. however, focuses on the uses of
only autocorrelation functions but this by no means suggests
that no useful application or information can be obtained

from cross—correlation functions.

5.2 STATIONARITY AND_ERGODICITY CONSIDERATIONS

Stationarity and ergodicity were defined in 3.2. If the
stochastic process is stationary then the statistical moments
describing the process do not depend on the value of the
argument with which the series is ordered. Instead the
functions depend only on the argument differences or iags
(da=a-a@’). Thus, the second argument (2’) in the preceding
formulae may be replaced bf
(74) a’ = a + da .

The general autocovariance function becomes, under this
condition,

(75  €£_(da) = EL(e(a)—€(a)) (e (a+da)~e (a+da)) ] .

An important consequence of the assumption of
stationarity is that both the autocovariaﬁceiand
autocorrelation functions are even functions of de [Bendat
and Piersol, 197113 i.e.,

(76) Ce(da) = Ce(mda) >

(77) R (da) = R_(~da) .
e e

As a result, only absolute values of da are considered here.




Ergodicity is one of the most simplifying and often used
assumptions in data series analysis even when the series is
known to be non—ergodic or even non—-stationary. This
assumption is essential in levelling where very }arge data
sets are encountered. As previously defined, a data series
is ergodic if its statistical properties can be determined
from sample averages over the argument values (&) rather than
from ensemble averages. This greatly reduces the amount of
data required for analysis. For residual errors from a
regression analysis, where ergodicity is assumed, the mean of
the errors is zero, i.e.,

(78) E(3) = ela+da) = 0 .

Eqn (75 therefore reduces to

(79 Ce(da) = Ele(a)e(atda) ]

and the autmcorre;atimn function is then
(80)  R_(da) = £_(da) / € _(O) ,

which is restricted to the limits +/— 1.

5.3 DIRECT _ESTIMATION

Estimates of autocovariance and autocorrelation
functions can be obtained from a simple averaging of the
products over the arguments when they are equally spaced.
Letting N denote the number of series values, the

autocovariance function is given by
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1 N-L
(81) € _(da) = ——— E ela.dela_+da) ,
e b b §
N-L i=1

where the lag number (L) is defined in terms of the sampling
interval (h) by L = da/h. Note that the nyquist frequency

(f) is defined in terms of the sampling interval as f = h—i.

/’,,C(dai)

| —_—.

d

7

a. b
1

FIGURE B: interval estimation of autocorrelation function for

unequally spaced data

A problem arises in levelling, however, due to the unequal
spacing of the arguments with which the error terms are
ordered. Nevertheless, a solution may be obtained in a
manner similar to the construction of an ordinary histogram
in statistics. Instead of evaluating C(dé) {Dr a specific
value of the lag, the average is taken over all e(a)e(a’) for

which dai < da < dai+b as illustrated in Figure 8. That is,

1 Ni
(82) € (da.) = —— zz:e(a Yela +da)
& 1 j 3
Ni j=1

N




for all da such that
a3 dai € da < dai+b -

The choice of interval width b depends upon the average
distribution of the data series. The value of b should be
large enough to ensure that the number of terms used in
estimating each Ce(dai) will give a meaningful result.

The accuracy of the discrete formulae are limited by the
finiteness of the data series. Clearly, the éccuracy is
reduced as the lag increases because of the few products

available for its estimation. Thus, little weight should be

given to autocorrelation values for large lags.

5.4 _COSINE_TRANSFORM_OF SPECTRUM

Anticipating the definition of the spectral density
function in the next chapter, the autocorrelation function
can also be derived indirectly ﬁhrnugh the inverse Fourier
transform (i.e., the cosine transform) of the spectrum of the
data series. The relation is given by [Bendat and Piersol,
19713 |
(84) € (da) = ES(N) cos(2 7 w da) dw .

The evaluation of the integral can be performed using

standard numerical technigues (e.g., the trapezoidal rulel.
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5.5 SMOOTHING

Autocorrelation functions (R) constructed from finite
data sets usually exhibit short periodic fluctuations due to
sampling. These may be filtered out in order to get a
clearer picture of the general trend of the autocorrelation
function.

To be useful here the choice of a specific filter would
have to meet the following three criteria:

i. R(O) must be equal to 1,

2. the phase of any periodic components must remain

\ unchanged,

Z. The value of every R(dz) to be filtered should be
weighted according tﬁ the number of products used for
its estimation. For the cugiﬁe transform of the
spectrum the number of products is set to 1 for all
R(da) since no products are employed in its
determination.

A symmetrical, Gaussian weighted moving average filter

was chosen here. The egquation defining the filter is

! itk i+k
l (85) R’ (da,) = E R(da ) N/ E N,
1 J J 3
j=i-k =i~k

where R’(dai) is the smoothed autocorrelation value, Hj is




the weight of each R(daj) and k is the number of lags either
side of dai to be included in the averaging process. The
effective width of the filter window is then 2kb. The weight
N is computed from

J
(B86) H =N 6 __. ,
J J i1
where Nj is the number of products used in computing each Rj
and Gj-i is the value of the coefficient of the Gaussian
filter, symmetric about dai.
In all of the analyses k& was set to 5 and the values of

the Gaussian weights (Si), obtained from statistical tables,

are
6y = 1.0000
& =6 = 0.8825
1 -1
6, = 6_p = 0.6065
6, = 6_g = 0.3247
6, = 6_, = 0.1356
b = 6_g = 0.0439 .

The problem of holding €(0) constant (i.e., so that
R(0)=1) was solved by altering éhe value of k for the first O
lags. That is, ki =5 ~ i. Thus, the values of C(dai) are
not smoothed substantially for small i. This is permissible
since for small lags R(da) is estimated mére;accurately as a
result of the larger number of products employed in its

determination.

wn W =




In order to allow for comparisons of different
autocorrelation functions and to also provide a quantitative
assessment of their behavior, some parameters are required in
order to characterize their form.

Moritz (19761 gives three parameters for the
characterization of autocovariance and autocorrelation
functions. These are the variance (£(0)), the correlation
iength and the radius of curvature at R(0). The correlation
length is the value of da corresponding to R(0)/2.

Because the radius of curvature at R(0) is not easily
determined, another parameter, the correlation distance, is
also used here. This is the smallest value of da for which
R{dal)=0.

Only the correlation distance and variance will be used
in describing the autocorrelation functions in the following
analyses because the correlation length is zero for almost
all of the analyses and the radius of curvature is too
difficult to compute.

Some qualitative comments will also be used to describe

the autocorrelation functions, particularly with respect to

its wavy (i.e. sinusoidal) or pulse~like behavior.




Chapter 6

ASSESSMENT OF ERRORS IN THE FREGUERNCY DOMAIN

Data series may also bhe described in the freguency
domain using the spectral density function of the series
(simply referred to as spectrum here). This chapter
mathematically defines the traditional Fourier spectrum and
describes the least-squares spectrum, employed here to
overcome the problem of the unequally spaced data series

found in levelling.

6.1 SPECTRAL_ANALYSIS

Briefly, the spectrum is the Fourier transform of the
autocorrelation function. They are related by [Barnes et
al., 19711

0
(87) Siw) = 6’R(da} cos(Z2 v w da) dida) .
where S(w) is the (one-sided) spectral density function and w
denotes the frequency.

Spectral density functions can be directly computed

using fast Fourier transform procedures (cf. Bendat and




Piersol L£L19711). However, the existing techniques do not
allow for unequally spaced data. For this reason the
least—squares spectrum EVanfEék, 19711 has been adopted

here.

6.2 LEAST-SEUARES SPECTRAL_ANALYSIS

To overcome the problem of unequally space data series,
the least-squares method was applied to the estimation of the
spectral density function by vanifek [1971]1. The method
simultanecusly estimates optimal datum biases, linear trend,
user defined trends, known periodic trends and unknuwh
periodics. In the usual applications the periods are
considered a signal whereaé the other components are thought
of as systematic noise.

By simultaneously accounting for all of the systematic
components a more reliable estimation is made possible (cf.
Taylor and Hamilton [£19721). However, for the purposes here,
no systematic noise are required to he estimated. The
spectral analysis is simply to be used tu'deﬁeci residuaal
components within the series due to improper modelling.

Since the input data series are the residual errors from a
regression analysis with zero mean and trend, only unknown
periods are being estimated. Their presence simply indicates

the existence of some unaccounted systematic effect.
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Neglecting, for the moment, some of the notation

developed thus far and considering only unknown periodic

trends in the series, the functional model of this signal for
the residual series is

(B88) e =28 x_,
5T

\

\

|
where

> vector of parameters to be estimated (2 x 1),

s X )Ts
i 52

e — input data series (i.e., residual errors from a

= (x
5

regression analysis) (n x 1),
&5 = Vandermonde matrix of functional values of the

systematic signal (n x 2)

cns(wai) szn(wai)
= _cus(waz) sxn(waz)
cos{wa_ ) sin(wa ) M

Given the estimated parameters (25) the estimated residual

vector (E) is then

B89 L=¢-ps2

I
]

= g -
The difference between the quadratic norms of the input
data series ¢ and this estimated residual vetor represents

|

|

1 the variation in ¢ explained by the systematic signal and is
' then the least-squares spectrum [Steeves, 19811, i.e.,

I

(90) S*(w ) =e'c Yo - plg Tip
5 e e

| where Qe is the variance-covariance matrix estimated from the

available information.




The presence of a systematic signal can be considered as
indicating an improperly designed autocorrelation function

used to construct the variance-covariance matrisx.

Unfortunately, the available software has no provision for
weighting the input data series values, Thus, Ee is
considered to be the unit matrix here. The(presance of a
systematic signal in the input residual errors from a
regression analysis shows that the errors are not
statistically independent as implied through the use of the
identity matrix for the weights. This result can then be
uzed to point out the presence of systematic effects
responsible for the statistical dependence.

Since Sf(ws) is restricted té the range <0, gT§>, the
normalized least-squares spectrum (S(ws)) may he given by
(1) sms)_é 1 - pTpseTe
and is limited to the range <0,1>,

It has been shown by Steeves [19817 that Egn. (921) can
be given explicitly by
(92) S ) = ngstgnggy"ig;g s ele .

Wells and Vanicek £19783 give the necessary algorithms far
the computer program employed in this analysis.

The criterion of statistical sighnificance of the
ﬁpectrél peaks has heen developed by Steeves [19811. However,

_the tests have not been incorpaorated into the availahle
software. This does not pose much of a problem since only

the general form of the spectrum is required for the

foliowing analyses. A brief description of the software is




provided in the appendix.

Comprehensive tests have been conducted on this
technigue where it has been shown to be superior to the
traditional Fourier transform in several aspects (cf. Taylor

and Hamilton £19721) including a proper treatment of

unequslly spaced data.




Chapter 7

ANALYBES OF BIMULATED DATA

The object of the analyses praéented in this chapter is
to gain some insight into the behavior of the least-squares
spectrum (LS8S) and autocorrelation functions from both
interval estimation (IE-ACF) and the cosineg transform of the
least-squares spectrum (CT-ACF). The data tested include
normally distributad random data, a purely periodic trend and
a guadratic trend superimposed on the random data.

The same values of the arguments are used to order all’
of tﬁe series values. The argument values are random with a
uniform probability distribution in the range <0,100>.
fnother data set in the range <0,200> was also used for the
purely periodic series (cf. 7.2). The 100 point data set is
actually a subset of the 200 point set. Both of these data
sets were computed from a random number generator in the
International Mathematical and Staﬁistical Library (IMSL) of
subroutines. |

The simulated data series can be thought of as either
statistically independent data (normally distributed data),
completely statistically dependent data (pure trend) or

partially statistically dependent data (normally distributed




data combined with a trend). The following sections look at
the behavior of autocorrelation functions and spectra for

these types of data.

Normally distributed random series values were computed
from the IMSL random number genarator (Subroutine SGNML) with
zero mean and unit standard deviatiﬁn. As previously
mentioned, the arguments with which the series was ordered
are uniformnly distributed random numbers, also computed from
the same IMSL subroutine. A plot of this data series is
given in Figﬁre % together with the results.

As expected, a ragressién analvsis of tﬁe sgeries gave a
zero mean at the 99% probability level and a standard

deviation of 1.05. Thus the computed series is indeed very
rlose to the standard normal distribution.

The LSS was computed next and is shown in Figure 2. It
can be seen that there appears to be no significant
periodicity in the data. The determination of significance
for thé spectrum is subjective, however, due to the lack of
any statistical assessment within the software.

Finally, autocorrelation functions were computed from

both the direct interval estimation (IE-ACF) and the cosine

transform of the least-squares spectrum (CT-ACF). As seen in
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Figure 7, the IE-ACF displays no significant
avtocorrelation. This is the desired form of an
autocorrelation function for random data (cf. Bendat and
Piersol [19711). There is, however, a slight periodic
behavior, albeit, very small. The greater noise for large
lags is a result of the finitensss of the data series.

The CT-ACF alsﬁ appears to indicate no significant
autocorrelation. It is interesting tn note the periodic
behavior, the form of which exactly matches the IE-ACF. This

is probably due to the sampling interval.

There obviously appears to be some small departure {rom
true randomness in this series. This is to be esxpected with
artificially congtructed random numbers.

The incompatibility between the CT-ACF and LSS is not

very pronounced here. Nevertheless, there is a definite
tapering of the CT-ACF with increasing lags as compared with

the IE-ACF.

v 3. Y S e e e R M e e e Amm s

7.2 COMPLETELY STATISTICALLY DEPENDENT DATA

This analysis was performed witbh the purely periodic
data series (sine wave) shown in Figure 10. The series was
constrﬁcted using the random arguments (a). The series values
1§} were computed from these arguments using a sine function

with a period of 20 argument units and an amplitude of i,
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FIGURE 10: Analysis of purely periodic data series

i.e.,

(93) P = sin(10 * & &

The results presented in Figures 10 and 11 illustrate

the fundamental differences between the IE-ACF and CT-ACF.
| _ Figure 10 displays the expected cosine trend of
autncurrelatinn (cef. Bendat and Piersol [19713). The
| finiteness of the data series does not affect the computed

autocorrelations for large lags in this case because the data
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series is purely deterministic. That is, no averaging
process needs to take place in order to arrive at a good
Estiméte. The LSS (Figure 10) also behaves as anticipated.
It properly records the correct period of the series (20
argument units).

The most interesting result of this analysis concerns
the behavior of the CT-ACF for the 100 and 200 point data
sets (Figure 11). The tapering of the CT-ACF is clearly seen
here. This effect is more pronounced in the 100 point series
then in the 200 point series. The difference, therefore,
must be at least partly a direct result of the finiteness of
the data series. A further explanation for this is that the
inverse Fourier transform EHPEFtS the spectrum to be
incorrect because of the finiteness of the sample. The
inverse Fourier transform then tries to account for this
incorrectness in the LSS eventhough it is not affected by the
finiteness of the series. Development of a least-squares

transform is needed to avoid this problem.

A quadratic trend combined with the random data of 7.1
was used in this analysis. The trend was intenionally kept
small in order to assess the ability of the autocorrelation

functions and spectrum to detect the relatively small




oo.om.ﬁ

1

0o°I-

WHOJSNBYL 3INISDI--438 -

00° 0™

00°1

b=

¥

a1
00°021 00°pR, ~ggh 00
] v < v

JIBWILST TYAYIINI--438 -

NOTLETIHd03

00°0°

00°1

NDT 18134500

AIN3ND3YA

021 (13201 0h"0 00°0,
Touaagqqﬁﬂaﬁaagaﬂaaaﬂﬂth
<
=1
=13
-
Ilmnu.—N
S
mﬂﬂ

WNY1J3dS 8
um
T0S
muﬂ
rm
-
. LN3WN9HY. sal =
00 omﬂ 00 m_m .44@.01
°=z
=

4+ T . T

FIY3IS Yivd o

e
++++

Analysis of data series with guadratic trend

FIGURE 12z




systematic component (see Figure 12). After modelling with a
linear trend the residual systematic component will be even
smaller. The series values (Bi) were computed using the
normally distributed series (Hi) and a guadratic . function,
with no zero— or first-order terms, using the equation

(94) B, = N + 352 a° .

The linear modelling of the quadratic trend was
accomplished using the optional trend modelliﬁg within the
least-squares spectral analysis program (cf. Wells and
Vanicek [19781) instead of the multiple linear regression
analysis because the data series was only of one dimension.
The resulting trend is of no interest here. It is the
analysis of the residual series containing the remaining
systematic component that is of concern. The variancé of the
residual series was found tc be only slightly greater than
that for the purely random series giving no evidence of any
residual systematic trend after linear modelling.

The most important feature of this analysis is the
apparent aliasing nf.the residuél trend as a low frequency
peak in the LSS (see Figure 12). It is satisfying that such a
low signal almost completely drowned in random noise can he
immediately recognized in the LSS at such‘a Helétively high
level (204 of the variance). It is this example that best
illustrates the applicability of this technique to the
detection of systematic errors, not only in levelling, but in
any type of data series.

Both autocorrelation functions display a trendy behavior
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also indicating the presence of correlation among the series

values. However, the IE-ACF exhibits a more periodic

behavior than the relatively small negative linear trend
shown in the CT-ACF. The difference between the two are
prabably a result of the finiteness of the data and the

incompatibility of the inverse Fourier transform and the LSS.
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Chapter B8

ANALYSES OF LEVELLING DATA

Analyses were performed with three different sets of
levelling data. These are designated as the "0ld Swiss",
"New Swiss" and "Oberharz" data sets. VEach analysis was
comprised of two steps. The first éunsisted of a
multi-linear regression analysis and the second a data series
analysis of the residual discrepancies associated with
various arguments (autocorrelation functions and
least—squareé spectra were computed). In addition,

uni—~linear analyses were also performed with the various

arguments for comparative purposes.
Not all of the results of the data series analyses are

reported in this chapter. However, the complete collection

of all plots for the analyses of all three data sets are
given in Appendix A. This section will focus on the general
results in terms of the presence of systematic effects within

{ . the data sets. Each of the three data sets are discussed

separately.
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8.1 OLD_SWISS DATA

The 01d Swiss data set refers to the 19i8 levelling line
connecting Castione with the Passo del San Bernardino,
Switzerland. The levelling data contains 135 first-order
levelled sections (double run) over loose gravel for a
distance of 50 km with a total elevation difference of 1820 m
and slopes of up to 13%. The available data included the
followings:

dfs - section elevation difference for forward

running (m),
» - discrepancy between forward and backward section
runnings (F+B) (mm),

Ngp s Np = number of setups in forward and backward

section runnings, respectively.

The section discrEpanéies and elevation differences were
corrected for the effects of rod caiibratinn, index errors
and rod temperature expansion [Schneider, 1982, 19831. The
mean standardized (to 1 km) discrepancy (Ell between the
forward and backward runnings for the line was approximately
0.81 mm/km. Since the section lengths were not available
this was computed from the square root uf'thg total sum of
the squares of the discrepancies divided by the total line
length (estimated from the New Swiss Data); i.e.,

@5 p, = arinint’?,

The standard deviation of the discrepancies is 0.4%9 mm.

Figure 13 gives a plot of the accumulated discrepancy
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FIGURE 13: Accumulated discrepancies versus accumul ated number

of sections — 0ld Swiss data

with respect to the accumulated number of setups. It can be
clearly seen from this plot that there is a small one-sided
influence present causing the discrepancies to steadily
accumulated. The total accumulated discrepancy for this 50
km line is 8.82 mm.

The analysed data series were constructed using the




TABLE 2: Summary of analyses of 0ld Swiss data

Hulti- Data series Data series
Argunent Attribute Regression analysis of apa}ysis with
analysis residuals unilinear trend
linear trend -0.736 nn/kn 0 -1 mn/kn
sign lavel 21% >99% 20%
sl L flat wWavy, small
character anpl.
autocorr. dist in 9.0 n
linear trend ~0.139 nn/kn 0 -0.136 nn/kn
sign level 4% >99% 668
L ACF flat flat
charactetr
autocorr. dist 0.03 kn 0.03 kn
linear trend | g 001 nn/turn pt. 0 -0.0024 nn/turn pt.
sign level 16% o T | 22% o,
" L R i s P
character
autocorr. dist 1 turn pts. 1 turn pts.

section discrepancies I as the series values. Three series
were generated by asaa;iating the discrepancies with the
section elevation difference (d#), the height (#) of the end
of the levelled section with respect to the starting point of
the whole line and the total number of turning points (R) in
the forward and backward runnings (n=nF+nB—2 ) (c.f. Egn
(66)) .

The results of the analyses are summarized in Table 2.
From these results there appear to be no significant
systematic effects present in this data seﬁ; All of the
trends have probability levels less than 504. The most
gsignificant trend in this analysis is for # (—0.1392 mm/km at
a probability level of 48%4). This is likely due to a

combination of rod scale errors or possibly a refraction

effect caused by a height dependent temperature gradient.
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The moderate ﬁrnbability level, however, indicates the effect
is not very significant.

As expected from a regression analysis the total
accumulated residual discrepancy was 0.00 mm. A plot of the
accumulated discrepancies versus the accumulated number of

setups is also given in Figure 13 and displays no apparent

systematic behavior. However, the standard deviation of the

residuals was only slightly reduced to 0.48 mm.

A data series analysis of the residual series of
discrepancies associated with the arguhentg gave no
avtocorrelation or spectral peaks. Although these results
imply that the data set is free of systematic effects other
information (e.g. section lengths) is required to properly
comment on the presence of any additional effects.

The above results are also supporited by the uni-linear
analyses. Here the same magﬁitudes and similar significance
levels were obtained as for the multi-linear analyses. In

this instance a multi-linear analyses is not required.

8.2 NEW_SWISS DATA

This data set is the 1979/80 relevelling of the 0Old

.Swiss line. It consists of 224 first—order sections levelled

aver paved roads for a total distance of 56 km. The

elevation difference here is 1840 m with the same ranges of

v Y o




slope as for the Dld Swiss data.

The data set contains the same information as the 0l1d
Swiss set with the addition of the starting dates of the
forward and backward section runnings and the section lengths
(S). The same corrections as for the 0ld Swiss data were also
applied here [Schneider, 1982, 1984]1. The mean standardized
discrepancy (Bl), computed from

(7&3 n, = 2(9213) / N,

i
was found to be 0.357 mm/kmilz, slightly hetter than for the
0ld Swiss levelling. The standard deviation of the
discrepancies is 0.34 mm and is also smaller.

The presence of a systematic effect within the levelling
data is clearly seen, however, in the plot of the accumulated
discrepancies versus the accumglated sectimn length (see
Figure 14). Here, the discrepancies accumulate at a greater
rate than for the 0l1d Swiss levelling. The total accumulated
discrepancy for the 546 km line is 34.83 mm. This is much
greater than the expected variation of statistically
indepeqdent discrepancies, computed from 91 to be 4.32 mm!
Thus, the levelling appears to be significantly contaminated
by systematic effect(s).

Seven arguments were used in constructing the data
series for this analysis. The first three (d#,#.n) were the
same as for the previous analysis. The fouw additional
series were constructed from the section length (8), the
total length accumulated from the beginning of the line (Ls),

the difference in the starting dates (d(date)) and that part
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of the difference in the Kukkamaki refraction correction

between section runnings (Egn (54)) for wﬁich:infurmation is
available. This will be refered to as the @ argument and is
obtained from Eqns (54) and (58). Putting Eqn (54) for the F

and B runnings into Eqgn (58) gives
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QthFdHF(SFIZn Yy o RﬂdtadHB(SB/°n )
2 w2 -2
< -
dt dff S° 0.25 (nF Np

(2?7) o

it

I
)

= A dE @ .

Note that dﬂ=dHF=~dHB and df#f and § are the same for each

section. A and dt are average values for # and dt.

A multi-linear regression analysis was performed using
the arguments #, IS, @, n and d(date). d¥# and § were not
included as they have been incorporated to a certain degree
into the 4 argument. The results of the analyses are
presented in Table 3. It can be seen from this table that all
but the & argument are highly significant. The residual

discrepancies again sum to zero and have a standard deviation

| that is slightly reduced to 0.32 mm.

' B The most significant trena (0.012 mmfturning point at a
probability level of 994) is associated with the rod

‘ settlement argument p. The estimate of the trend is seen as

an average value of T for the line (cf. Egn (66)). The

‘ ; magnitude agrees remarkably well with Anderson’®s [19831]

i Experiment (cf. 4.4.2). The data series analysis of the

residual series of discrepancies associated with r» showzd no

significant autocorrelation or spectral peaks thereby

indicating the linear trend is able to successfully model rod

settlement through the argument n.

The dependence of D on d(dete) is also highly
significant. Here a trend of —-0.018 mm/day is obtained with
a probability level of 98%. A plausible explanation for this

may be the presence of vertical crustal motion between the F

Y
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TABLE 3: Summary of analyses of New Swiss data
Hulti- Data series Data gexiqs
fArgunent Attribute Regression analysis of analysis with
analysis residuals unilinear trend
linear trend 0.04 nn/kn 9 nn/kn
sign level 22% 80%
dH
ACF wavy, small wavy, small
character anpl, anpl.
autocorr. dist in in
linear trend 0.22 nn/kn 0 0.04 na/kn
g sign level 88% 399% 30%
ACF wavy, snall Wavy, snall
character anpl. anpl.
autocorr. dist 100n 100nm
linear trend 0 0.04 nn/kn
. sign level 94% 60%
ACF wavy, small wavy, spall
character ampl. anpl.
autocorr., dist ; ion 3 n
linear trend 0.010 nn/kn 0 0.018 na/kn
sian level 91% >99% 33%
E T s SR ST ——— - i
' ACF wavy, small wavy, small
character. anpl. anpl.
autocorr. dist 1.5 kn 5 ka.
-6 3 3
linear trend -6.53 x 10 nn/n 0 =1.7 x 10 nn/n
0 | sign level 26% . I 24%
: ACF wavy, snall wavy, small
character anpl. anpl.
autocorr. dist 40n > S00 n 3
linear trend 0.012 mn/turn, pt. 0 0.015 mn/turn. pt.
...... sign level 28 L 80%
" ACF wavy, snall wavy, small
character anpl. anpl.
autocorr. dist 1 turn. pt. 1 turn. pt.
linear trend -0.018 nn/day 0 -0.013 nn/day
sign level 98% »99% 54%
diaate) ACF flat flat
charactey
autocorr. dist 0.3 days 0.3 days




and B runnings causing the elevation differences (in the
forward sense) to increase. Although the Alps are known to
be experiencing crustal uplift due to tectonic activity, the
magnitude computed here disagrees with the expected values
(cf. Gubler et al. [19811). Other sources of vertical
crustal motions such as ground water variations and tidal
effects may also contribute to the observed‘trend. The data
series analysis of the residual discrepancies associated with
d(date) displays no autocorrelation or spectral peaks. Thus
the linear relation between D and d(date) is supported.

The presence of rod calibration and dilatation errors
are indicated by the dependence between the discrepancies and
height (cf. 4.2.3). The multi-linear analysis gives a trend
of 0.22 mm/km significant at the 8874 probability level. The
trend is an order of magnitude smaller than the accuracy of
rod calibration (2 mm/km [Schnaider, 19841). Thus the effect
can be considered to result from the limited accuracy of the
calibration procedure. A data series analysis of the
residual discrepancies associated with # shows no significant
autocorrelation or spectral peaks. This indicates the
relation between # and # is adequately modelled as a linear
one.

The source of the dependence of 7 on IS is not clearly

understood. A trend of 0.010 mm/km at the 91% level of

-significance was determined. A possible explanation for the

relation may be due to gradual changes in conditions

affecting other errors such as refraction (changes in the

w O =
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temperature gradient), rod settlement (changes in soil type),
crustal motion, etc. Again no autocorrelation is observed
amnng.the residual discrepancies associated with Z8.

Finally, as for the 0Old Swiss levelling, the refraction
argument @ does not appear to be significant here. The
computed linear trend is significant at only the 26% level of
probability. No autocorrelation was displayed by the data
series analysis of the residual series associated with Q.

In contrast to the 0ld Swiss data set, a uni-linear
analyses of the arguments gave much lower significance levels
than for the multi-linear case. This is due to the presence
of other significant effects in the series. In addition, allr
but two arguments gave different values for the trends. From
this comparison it can be seen that the multi-linear analysis
provides more relisble estimates of the trends and

particularly the significance levels.

This data gset is the same as ﬁhat used by Fawaz [19811]
for his investigations of refraction effect. The data
consists of seven second-order levelled loops containing a
total of 342 sections over 165 km of rugged terrain with an
elevation difference of B850 m and slopes ranging to 10%4.

The data consisted of the discrepancies 2, the average
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lengths — Oberharz data

number of section setups (n=0.5(nF+nB)), the section

elevation differences (d#), the section léngtbs () and the
time and date of the start of the forward and backward
runnings. Rod index and calibration corrections had been

applied to the discrepancies [Niemeier, 19831. The mean

standardized discrepancy 91 igs 2.50 mm/kmi/2 and the standard

deviation of the discrepancies is 0.99 mm. Clearly, this




\ data set is of a much lower order of accuracy than either

Swiss data set.

A plot of the accumul ated discrepancies (see Figure 15)
also points to the presence of systematic effects as
witnessed by a one-sided accumulation much greater than
gither Swiss levelling. The total accumulated discrepancy is
| ' 163;12 mm whereas for this 165 km line the éllnwable

variation for statistically independent discrepancies,

computed from Bl,is 32.09 mm. A much greater difference than
for the Swiss data sets.

The arguments used for constructing the data series were
the same as for the New Swiss analysis except for & since the

number of setups for each running were not available.

Instead, only part of the @ argument is used. That is, dﬂ~32

is used do that the trend gives an average estimate of the

-1 -1
value of & dt {nF -nB

[ All loops were lumped together rather arbitarily,

) for the network.

} however. Thus, the Oberharz data is more heterogeneous than
the other data sets and no firﬁ conclusions should be drawn
frumlthese results. Clearly, reversing the sense of
direction of a line would also change the signs of the
discrepancies. Although, many investigatoré use the absolute
value of discrepancies in their Qnalysas (2.g-. Muller %
Schneider £194681), it is believed that some important
'infmrmatiun would be lost this way.

A multi-linear analysis was performed with arguments #,

is, dﬁ~52, n and d(date). The results of the analyses are

- G4 —~
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| TABLE 4: Summary of analyses of Oberharz data

Hulti- Data series Data gerigs
Argunrent attribute Regression analysis of “;'“1.1!'315 uith
analysis residuals unilinear trend
linear trend =3.7 an/kn =5 nn/kn
= sign level 76% ' 0%
ACF snall trend small trend
character and wavy and wavy
i autocorr. dist 10 n 1z n
|
‘ linear trend 0.34 nn/kn 0 0.20 an/kn
8 sign level 91% 92% ' 70%
ACF ned. - large trend ned. trend
character
autocorr. dist 376 n 366 n
linear trend 0.23 nn/kn 1.4 nn/kn
a 5 sign level 70% »99%
‘ ACF wavy, snall flat
i character anpl.
i autocorr, dist 30 n 30 n
linear trend -0.003 nn/kn 0 0.003 nn/kn
~ sign level 96% 96% $99%
s PR NSRS PNRPISUTIIPE. . 1< SRUSTPRMIIRIN COOSRRTNIER O
ACF large long large long
! character . period trend period trend
autocory. dist : 3.1 kn 32 kn
-9 3 -9 3 -9 3
linear trend -8.83 x 10 nn/n -8.5 x 10 na/n -6.9 % 10 nn/n
' 2
| i 93%
! dHS . level . : 84% ...... i
: ACF wavy, snall wavy, snall
1: character anpl. 6 3 anpl. 6 3
autocorr. dist 2x10 n 6x10 n
linear trend 0.032 mm/turn. pt. 0 0.031 pn/turn. pt.
. sign level »99% 094% . »99%
j O e il i
ACF wavy, snall flat
character anpl.
autocory. dist 1 turn. pt. 1 turn pt.
linear trend -0.003 nn/day 0 -0.006 nn/day
sign level L . W S I, . L S
d(date) ACF i wavy, snall snall trend
character ampl. wavy
autocorr. dist 32 days 32 days
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given in Table 4. Here, all arguments are very significant,
the lowest probability level being 84% for d(date). The
total accumulation of the residual discrepancies from the
multi-linear analysis is again zero. The standard deviation
of the residuals (0.78 mm) is also much lower.

The most significant trend is again for the rod
settlement argument n. A trend of 0.032 mm/turning point was
found significant at a probability level of greater than 99%.
The magnitude of this trend is much larger than that expected
for T (cf. 4.4.2). However, the netwnrk is only of
second-order accuracy. Thus rod settlement can be expected
to be of a larger magnitude due to the less stringent field
procedures. The data series analysis of the residual series
associated with » gives no autocorrelation or spectral peaks
indicating that the the rod settlement has been properly
modelled by the linear trend; |
The refraction effect is clearly seen for the dH-Sz
argument where a linear trend of -B.B3x10_9mm/m3 is obtained
with a significance level of 93%Z. This is equal to the @
argument for the New Swiss data set when an average value of

- -1

tn, "-ny 11=0.0014 setups™' is used. the relatively flat

F
autocorrelation functions and spectrum for the data series
analysis of the residual series associated with r.lft'-S2
indicate the successs of this argument to linearly maodel the
bulk of the refraction effect. However, there is a

significant linear trend remaining with a value of

HB.Exloﬂqmm/mz significant at a probability level of B4Z.




functions (see Figure 16). This is likely caused hy a

This is almost identical with the trend from the multi-linear
analysis. Thus, the simplified refraction argument is not
able to properly account for the remaining cdrrelatinn of
with d#, S$ and even dH-Sz. This is understandable since
(nF—I—nB*i) is likely to be highly variable and not easily
modelled as an average parameter. Furthermore, the
heterogeneity in the data set probably reduces the
significance of this argument.

The presence of rod calibration or dilatation errors in
this data set is evidenced by a linear trend of O on # (0.34
mm/km at a probability level of B88%). The trend is of the
same order of magnitude as for the New Swiss levelling thus
indicating the same accuracy of calibration for the rods.
The analysis of the residual discrepancies associated with #,

however, shows a medium trend in the autocorrelation

non—linear dependence between 7 and #. The shape of the
antocorrelation function appears very similar to that for the
simul ated quadratic trend data series thus implying the
presence of a gquadratic relation here. The heterogeneity of
the data series limits any concrete explanations for the
abserved autocorrelation.

The relation between I and I8 is also present in this
data set. Again no explanation is readily availble for
this. A trend of 0.010 mm/km is given by the multi-linear
analysis with a 214 level of significance. This is of the

same order of magnitude as for the New Swiss levelling.
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Although the same plausible explanation as for the New Swiss
data set may be used here, the heterogeneity of the data set
probably plays a large role. As for the A series, the
avtocorrelation functions of the residual series for IS
displays a large long period trend (see Figure 17). Again,
the heterogeneity of the data set limits the postulation of
specific causes of the autocorrelation other than the
heterogeneity itself.

Finally, the relatively moderate dependence of I on the
didate) is witnessed by a moderately significant (84% level)
trend of —0.003 mm/day. This is again probably a result of
vertical crustal movements or benchmark settlement. As
expected, the magnit&de is much less than for the New Swiss
data set where tectonic activity is much greater. The effect
here is more likely a result of ground water variations or
benaﬁmark settlement. The data series analysis of the
residual discrepancies associated with d{date) gave no
gsignificant autocorrelations or spectral peaks, supporting
the existence of a linear relationship bhetween P and
didate).

As for the Swiss data sets, uni-linear data series
analyses were also performed on ali the arguments. From
Table 4 it can be seen that the resulting trends are all of
the same order of magnitude as for the multi-linear
analysis. In this case the multi-linear analysis does not
éppear to offer any significant advantage over the simpler

uni—-linear analyses.
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The resuits obtained from this data set should not be
considered conclusive because of the heterogeneity of the
discrepancies. A better approach would be to analyses each
line seperately rather than lumping them together
arbitrarily.

In conclusion, it can be seen that the Oberharz data is
very different from the Swiss levellings. fhe trends are
much larger and more statistically significant. This is the
expected result for comparisons between levellings of

different order.

- 103 -




Chapter 9

CONCLUBIONS AND RECOMMENDATIONS

The usefulness of regression and data series analysis
has been demonstrated by their ability to assess the gquality
of precise levelling lines with respect to the presence of
systematic effects. Tests with simulated data allow one to
characterize the behavior of the computed spectra and

autocorrelation functions under a variety of conditions.

. This can subsequently be used as a tool in detecting and

possibly modelling systematic effects in levelling.

The analyses of the Swiss and Oberharz levellings show
considerable differences due to their different orders of
accuracy. The Swiss levellings are relatively unaffected by
refraction. O0On the other hand £he Oherharz data set appears
to contain a relatively large refraction effect as witnessed
by the dependence of the discrepancies on dH-SZ, Rod
settlement is also detectable for both the Swiss and Oberharz
data sets. The observed trends are 0.01 mm/turning point for
the New Swiss and 0.03 mm/turning point for the Oberharz
levellings. This agrees well with the results of Anderson’s
[1983]1 experiments. In addition, there also appears to bhe a

small effect due to rod graduation and/or dilatation errors
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in both the Swiss and Dbérharz data sets. This is a result

of the limited accuracy of the rod calibration since the

magnitudes of the trends are of the same order or less. The
cbserved relation between I and S for both the New Swiss and
ODherharz levellings is not so readily explained. This may
possibly be due to gradual changes in conditions for
different parts of the levelling line. Finally, both data
sets again display a dependence of I on d(date) thereby
indicating the existence of crustal movements or benchmark
settlement. The conclusions drawn from the analyses of the
Oberharz levelling are less reliable, however, due to the
heterogeneity of the data set as a result of arbitrarily
lumping together individual lines of the levelling net.
Nevertheless it can be seen that a vast amount of other
information is available in levelling data.

.The multiple linear regression analysis has shown to be
a valuable method for modelling the effects of refraction and
rod settlement. The guasi-stochastical behavior of
systematic errors tends to make them hard to predict.

However, the regression analysis provides the best fit (in

1 the least-squares sense) of the available models to the

pbservations. The simultanenus estimations of systematic
. effects avoids the aliasing of different sources or errors.

l : The most obvious drawback to the accurate estimation of
the autocorrelation functions is the incompatibility of the
| inverse Fourier transform and the least-squares spectrum.

The development of the inverse least-squares transformation
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from the least-squares spectrum is now being contemplated.
Furthermore, the least-squares spectral analysis may also be
extended into multiple dimensions in order to avoid possible
aliasing and cross—correlations in the spectrum. This would
also incorporate the advantages of the least-squares spectra
simultaneous determination of the trends and spectral
frequencies and then eliminate the need for a preliminary
regression analyaié.

Further down the line a practical and useful application
of the technigue would be in the esﬁimatinn of characteristic
covariance functions for specific regions in levelling
networks. This could then be used'iﬁ constructing a fully
popul ated variance—dnvarian:e matrix for network
ad justments. This would be very critical for instance when
inferring the presence of vertical crustal mpvements.

Further research will be required in this respect, perhaps
along the lines of Lucht [19721.

It is the intention of the author to continue working in
these directions. More analyses will be needed to acquire a
better understanding and thus a better interpretation of
autocorrelations in levelling. Presently,‘the technique has
a clear application to levelling, particularly as a

diagnostic tool.
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