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Abstract. Traditional reliability analysis has been aug-
mented with geometrical strength analysis using strain
techniques, resulting in the conception of an extension
to reliability theory called robustness analysis. To reflect
contemporary statistical terminology, robustness is tak-
en to mean insensitivity to gross errors or blunders in the
data. Robustness analysis is a natural merger of
reliability and strain and is defined as the ability to
resist deformations induced by the smallest detectable
blunders as determined from internal reliability analysis.
The geometrical strength analysis technique is used in
order to provide a more complete and detailed descrip-
tion of the potential network deformation in terms of
three independent measures representing robustness in
scale, orientation, and configuration. These measures
are also invariant with respect to “datum” shifts and
orientation, and practically invariant to changes in scale.
Initial experiences with robustness analysis have shown
that it is a very powerful technique capable of providing
a detailed point-by-point assessment of the strength of a
network.
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1 Introduction

In most countries, horizontal geodetic networks are
tested only in the statistical sense. Statistical testing
consists of: testing for gross errors in observations;
testing of a posteriori value of the variance factor o2
(often incorrectly called ““a posteriori value of standard
deviation of unit weight); testing of absolute and
relative confidence ellipses, individually and collectively;
and testing of a posteriori estimates of residuals

(Vanicek and Krakiwsky 1986). All these tests are based

on the same null hypothesis H, which postulates the
vector of misclosures w =1— f(x(?)) to have a normal
probability distribution with an expected mean value A
ox (where A is the matrix of partial derivatives of
observations 1 with respect to x and Jx is the vector of
corrections to the initial value x(*) of x) and expected
covariance matrix C

H,: w is distributed as n (& A 0x,Cy) (1)

Also common to all the tests is the selection of an a priori
value a,, called the significance level of the test, which is
the level of probability that the hypothesis would be
rejected when it is correct, i.e. the probability of type |
error. This individual or so-called in-context probability
level must be compatible with the simultaneous proba-
bility level used for the global variance factor test on the
residuals. For an o simultaneous probability level and
n observations, the individual significant level o, is
oo ~ a/n (this is a crude approximation valid only for
small n; Vanicek and Krakiwsky 1986).

The additional question we should also pose is: what
would happen if one or more observations, 1, are bur-
dened with a gross error Al so that the null hypothesis of
Eq. (1) is not satisfied. Evidently, if Al is such that it gets
detected by the statistical test on estimated residuals on
o, significance level, the erroneous observation can be
corrected (in practice more likely deleted), the network
re-adjusted, and we obtain correct results. The problem
occurs when Al is not detected by the test. This may
happen because of one of two reasons: (i) the observa-
tion is not sufficiently checked by other independent
observations (e.g. in a one-sided traverse); or (ii) the test
does not recognize the gross error, i.e. it commits a type
IT error.

It was a Dutch geodesist, Baarda, who first investi-
gated the problem of type II errors in geodetic networks.
The results of his investigations are summarized in his
publications on the theory of reliability; see, for exam-
ple, Baarda (1968). The central idea of Baarda’s theory
of reliability is the formulation of an alternative hy-
pothesis Ha,
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Ha: w is distributed as n (&; A dx + Al C)) (2)

which postulates the existence of gross errors Al. (In
Baarda’s original formulation the alternative hypothesis
looks a little different from the form used here.) By
means of reliability theory we can estimate the maxi-
mum values of gross error Aly,y; in observations, which
would not be detected by a statistical test on o,
significance level, or, conversely, we can estimate the
probability of a given type II error occurring. These
estimates are governed by the relation

Almax.i = lo(“mﬁo)% (3)
where /1, is the value of the shift (non-centrality
parameter) of the postulated distribution in the alterna-
tive hypothesis of Eq. (2) as a function of selected
probabilities «,, B,; 0, is the a priori value of standard
deviation of the ith observation /; (considered known),
and r; € (0,1) is Baarda’s redundancy number, which
expresses the degree of influence on the estimated
(adjusted) positions of the ith observation (Baarda
1968). Baarda refers to the quantities Alpax,; as a
measure of internal reliability. Figure 1 illustrates the
relation between o,, f,, and Ao.

For completeness, we have re-stated briefly the clas-
sical approach to reliability because it is one of the
building blocks of the “‘robustness analysis”. As soon as
we know how to estimate the maximum values of errors
that can be expected to pass the statistical tests, it makes
sense to ask a follow-up question: how much can these
undetected errors influence the estimated positions?
When the influence is small, we talk of a “robust” net-
work; if the influence is large, we talk of a weak network
that lacks robustness. Measuring the degree of such
“robustness’ is the aim of what we call “robustness
analysis”. We have selected the term “‘robustness” to
reflect its modern usage in statistics, i.e. those statistics
that are insensitive to outliers are called robust. Here,
our robustness analysis provides a direct measure of
sensitivity to outliers. It seems to us that this term is
more intuitively descriptive than any of the possible al-
ternatives, such as ‘“‘external reliability” or “‘network
strength”.

We have studied the robustness of networks for some
time and published some of our findings in a paper
(Vanicek 1991), in a series of technical reports (Vanicek

<—L>

Ho: Null Hypothesis
(without Blunder)

et al. 1991, 1996; Krakiwsky et al. 1993), and in con-
ference presentations (Craymer et al. 1993a, b, 1995;
Szabo et al. 1993). Here, we endeavour to summarize
our findings as well as to provide an explicit proof for
the robustness datum independence.

2 Description of network deformation

In order to be able to measure the degree of robustness
of a network, we have to be able to measure its degree of
deformation. The most simple way of describing a
deformation is by means of displacements of individual
points of the network. On the basis of normal equations
(Vani¢ek and Krakiwsky 1986), we can write the
following expression for the adjusted coordinates as
linear combinations of collected observations:

% =xO 4 5% = (ATC;'A) ATCT (1-Fx©))  (4)

and easily derive also the estimates for displacements Ax
caused by arbitrary changes Al in observations

Ax = (ATC7TA) TATCT AL (5)

This was Baarda’s choice — actually he chose to use a
norm of the displacements Ax and misleadingly referred
to it as a measure of external reliability (it is really only a
measure of internal reliability but in parameter space
rather than observation space).

The problem with displacements is that their esti-
mates are datum dependent. That is, these estimates
depend not only on the geometry of the network, and
the accuracy of the observations, but also on the selec-
tion of constraints for the adjustment (fixed point,
weighted point, fixed or weighted azimuth, minimum
constraint criterion, generalized inversion of the matrix
of normal equations, etc.), which have nothing to do
with the network deformation. If we want to use the
described deformation for the quantification of network
robustness then the deformation description must reflect
only network geometry, and the type and accuracy of
the observations. The deformation description must
therefore be independent of adjustment constraints
(datum)! Strain, which describes a differential deforma-
tion, is one such description. Let us denote a displace-
ment of a point P; by

Ha: Alternate Hypothesis
(with Blunder)

Ero(1-010/2) = u-EHa(Bo) = H—EHo(1-Bo)

Fig. 1. Relationship between «,, f, and 4,. Note
the relationship between A, and the abscissa values ¢
for H, and Ha:i.e. 4o = & (1ao/2) + & (18,)
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then the tensor gradient with respect to position is

o _ | Ou;/0x  Ou;/0y
E; = grad(Ax;) = [av,-/ax 61),»/6)/} (7)
where Ax; is the displacement vector of P;. Matrix E is
the so-called deformation or strain matrix (at point 7)
and is independent of the choice of the “fixed” (or
weighted) point for the adjustment (Vanicek and
Krakiwsky 1986). It is of interest to note that the

following relation holds:
Ax; = Exx; + ¢, (8)

where x; is the position vector of point P, and ¢, is an
arbitrary shift vector, constant for the network. The
deformation matrix is usually decomposed into its
symmetric and anti-symmetric parts

E=S+A 9)

where

gl T g R o B
0 ek .

A:_;(g;g;) 2(6,()@) :[g Ow} ()

The matrix S describes symmetrical differential defor-
mation at a point which is often used in continuum
mechanics (cf. Means 1976). The symbol @ in the A
matrix (not to be confused with the already introduced
design matrix) describes a differential rotation at the
point of interest. This differential rotation can be further
decomposed into the (block) rotation w, common to the
whole network

W, ~ mean (w;) (12)
and the proper differential rotation dw at each point.
ow; ~ w; — mean (w;) (13)

Equations (7)—(13) are valid for any point of a
continuum, and S, A, w, and Jdw can be regarded as
compact functions of positions. For our applications,
however, it makes sense to define them only for the
points of the network, i.e. as point functions.

We do not claim to be the first to use strain for
geodetic applications. Probably the first application of
strain in geodesy is due to Tsuboi (1932), who used
strain to portray horizontal crustal deformation in the
Tango area in Japan. For more information on strain
analysis, see Vanic¢ek and Krakiwsky (1986, pp 649-655)
and references therein. For more recent references see,
for example, Grafarend (1985), Dermanis and Grafa-
rend (1993), and Welsch (1997).
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3 Datum independence of the deformation matrix

The effect of the adjustment constraints, or datum
definition, on the deformation matrix is an important
issue in the strength analysis of networks. The origin is
usually defined by specifying fixed or heavily weighted
coordinates for one or several points in the network.
The orientation is often defined using weighted obser-
vations such as azimuths or observed position differ-
ences between points. The scale datum is generally
defined using weighted distances or, again, position
difference observations. Two or more weighted position
observations are also used to define datum orientation
and scale.

Ideally the strength of a network should not depend
on the choice of a datum. It will be shown here that a
scale change has only a second-order and thus negligible
effect on the deformation matrix, while translations of
the datum origin and rotations of the coordinate system
have no effect at all. We must stress, however, that we
are talking about a datum specified by minimal con-
straints. If more than minimal constraints are used, we
are faced with a very different problem, that of an over-
constrained solution. An over-constrained solution will
indeed show a deformation different from that of a
minimally constrained solution. Discussion of the ad-
ditional deformation due to introduced constraints over
and above the minimal ones, is outside the scope of this
paper.

Let us discuss the effect of datum origin first. Dif-
ferences in the datum origin between different strain (or
strength) solutions completely cancel in the determina-
tion of the blunder-caused displacements. That is, the
displacements for any two solutions are identical even
though they may be based on datums with different
origins. Consider the estimated position vectors x; from
observations without any blunder and the position
vectors x, after the network has been perturbed by one
or several blunders. The displacements Ax caused by the
blunders are then

Ax =x; — x| (14)

Consider now a second adjustment using a different
datum origin, which is offset from that for the first
solution by a translation t. For this solution, the original
coordinates xj and those x; after the perturbation by the
same blunders, can be expressed in terms of the
coordinates for the first solution as

X]=x;+t (15a)

X;:X2+t (ISb)

The displacement field Ax* (caused by the same
blunders) for this second solution is then

AX* =x) —X] =Xo —X| = AX (16)

which is identical to the first solution. Any translation of
the datum origin therefore cancels in the displacements.
Since the displacements are identical in both solutions,
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the deformation matrices will also be identical and thus
invariant to datum translations.

Next, let us look at the effect of the scale constraint.
The adjustment before and after a change in scale of As
results in the following coordinates:

X; = (1 +As)xy (17a)

X; = (1 + As)x» (17b)
The displacement field Ax* for this second solution is
then

Ax* = x5 —x] = (1 + As)Ax (18)

and the corresponding strain matrix E* is

E* = grad(Ax*) = (1 + As) grad(Ax)
=(l+As)E=E—-AsE (19)

Note that As Ax, and thus As E, is only a second-order
effect.

The worst-case effect can be estimated by considering
a solution with very large strains of about e = 1 x 10~*
(100 ppm). If the datum is changed in scale by an ex-
tremely large amount, say As = 1 x 1072 (10000 ppm),
the change in the deformation matrix is only
As-e=1x107% (1 ppm). The strain elements are un-
likely to exceed 50 ppm in a real geodetic network, in
which case a scale change of over 20000 ppm will be
required to produce a 1-ppm change in strain. In practice,
the scale of the network datum will generally be known to
much better than 10-ppm accuracy, which would result in
scale effects of only 0.001 ppm for this example. These
estimates have been verified using numerical tests.

Concerning the invariance of strain under an orien-
tation constraint, the problem is a bit more complicated.
In fact, the symmetrical part of the strain matrix changes
under the rotation of the coordinate system used for the
adjustment, but the anti-symmetrical part does not.
Neither do the strain parameters, called deformation
measures in the following sections. We will show the
proof of this after we have introduced the deformation
measures.

4 Evaluation of the deformation matrix

The deformation matrix [Eq. (7)] for individual network
points can be evaluated in a number of ways. The most
simple approach is to obtain the partial derivatives
directly from the displacements Ax, obtained from
Eq. (5). Let us take, for example, point P, = Py, with
position vector r; = (x;,);) =ry and adjacent points P;
with position vectorsr;, j = 1,...,4. For the point P, and
each point P;, we can write two equations for two planes
fitting the displacement components #; and v; as follows:

vVj=0,1,...,4

at (g)o-x+ ()o-m=y @)

Vi=0,1,...,4

alii al),' o
bi + (5) (% — xi) + <@> v =) =

where all the partial derivatives as well as the absolute
terms a;, b; and the coordinates x;, y; refer to point P;. In
matrix form, Egs. (20) read

(20b)

o
Ou;
A K w | =w
du;
L9y ]

Vj=0,1,... (21a)

b;
A K w | =
L ]

Vi=0,1,... (21b)

where w; and v; are sub-vectors of the total vector of
displacements Ax, which contain only the components
referring to the five points in question. For j > 1 and
points not on a line, Eq. (21) can be solved by using the
method of least squares (LS). In solving for the
unknown partial derivatives and absolute terms, all
“observations” u and v are considered with equal
weights. We then obtain

ai;

. du; _
Vi in the network: | 5 | = (KZTK,) lKiTui =Qu;
Qu;
dy

(22a)
b;
Vi in the network: %

v,
Oy

= (KiTKi)ilKiTui =Qyv;

(22b)

or

"]
oy
ox
Qu;

=15 el @

Ou;
Ox
Ou;
L Oy

Vi in the network:

Since the absolute terms are of no interest to us, we can
eliminate the first row of the Q; matrix and retain only
the reduced matrix Q; of dimensions (n, 2), where n — 1
is the number of adjacent points used in evaluating the
deformation matrix at point P;. If we form appropriately
a new matrix T; containing the reduced matrices for the
n points, we can use the full vector Ax on the right-hand
side to obtain



Vi in the network: | & | = vec(E;) = T, Ax (24)

Substituting Ax from Eq. (5) for Ax, we finally obtain

Vi in the network: vec(E;) = T;(ATC;'A) 'ATC AL
=LAl (25)

which gives the matrix of deformation at P; as a linear
function of all the changes Al in the observables.

For readers familiar with numerical methods, we note
that the described technique is nothing other than a
particular application of finite difference method for the
evaluation of the partial derivatives of interest. The se-
lection of the “‘neighboring’ points for the evaluation of
the deformation matrix at P, may be done by following
different principles. The simplest, and most geometri-
cally meaningful, is to use either all or the closest of the
points connected by observations to be the points of
interest P, (Vanicek et al. 1991).

It should be pointed out that we may, and do, en-
counter singular cases of Eq. (19). Apart form the un-
likely case, when the matrix of normal equations
ATCI_ 'A is singular and there are infinitely many solu-
tions vec(E;), we obtain situations where the strain ma-
trix at a specific point (or a set of points) is undefined.
This happens when the points from which the strain
components are evaluated [cf. Eqgs. (20)] are all in one
line. It is not possible to fit a plane to such a set of points
and the strain components in the direction of coordinate
axes become undefined. In fact, it is possible to compute
just one strain component, in the direction of the line
formed by the defining points, but we consider the dis-
cussion of the treatment of such singularity to be beyond
the scope of this paper.

Another pathological case should be discussed here,
however, as it does occur in practice. When a point is
tied to the other points of the network by only one
observation line, we can form only two observation
equations (one for the x component and one for the y
component) and the strain matrix at this point is again
undetermined. All the notions mentioned in the above
paragraph then apply to this case as well. The points
connected by only one observation link are therefore
omitted from the robustness analysis.

5 Deformation measures

According to Eq. (25), every potential change Al; in
an observation causes a potential deformation of the
whole network. This means that all the deformation
matrices at all the network points (each caused by a
change of one observation) will be generally different
from zero. For m observations within the network we
will have m different deformation matrices for each
point. In order to study the degree of deformation
caused by potential gross errors in observations, it is
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necessary to consider only the largest deformation at
each point. This largest potential deformation corre-
sponds to the weakest link in the network — the
network can only be as strong or robust as its weakest
link. This is our “‘credo of the weakest link” (Dare
1983) which we use systematically in measuring
potential network deformation.

Since the deformation at each point is described by a
matrix, the distinction of “‘the largest” deformation is
not a trivial problem. It would be necessary to associate
a scalar measure with each matrix and use that measure
to recognize the largest deformation. This, however,
would not make much sense from a geometrical point of
view because the deformation matrix describes at least
three measures of deformation: strain, shear, and the
already discussed differential rotation. These measures
are more or less independent and as such they must be
considered separately.

In our approach (Vanicek et al. 1991) we use the
following descriptors (deformation measures): mean
strain or dilation o, total shear y, and the above intro-
duced local differential rotation w. Mean strain is equal
to one-half of the deformation matrix trace

o =Ltr(E) = 1tr(S) = 1 (0u/0x + ov/dy) (26)

Complete shear is defined as the geometric mean of pure
shear 1

© =1 (Qu/dx — dv/dy) (27)
and simple shear v

v =3 (0u/dy + dv/dx) (28)
so that we have

y=3Ve+0? (29)

As we have stated above, these three deformation
measures are invariant under an arbitrary rotation of
the coordinate system, and thus under an arbitrary
choice of the orientation constraint or orientation
datum. The proof of the invariance is a bit involved
and is shown in the Appendix in order not to interrupt
the flow of the argument here.

Deformation measure can, of course, be quantified
by many other means. Our description has the ad-
vantage of having an easy intuitive interpretation;
mean strain can be regarded as a deformation in scale,
complete shear as deformation of (local) configuration,
and local differential rotation (corrected for the mean)
as local twisting.

6 Robustness

As soon as we decide how to ‘“measure” potential
network deformation, it becomes easy to measure the
degree of network robustness. All we have to do is
substitute maximum undetectable observational errors
from Eq. (3) for the arbitrary changes in observations in
Eq. (25) to obtain
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vec(E;) = A0k, ﬁo)Li% (30)

where o, is the significance level used for testing the
outliers in the network, and then follow the algorithm
described in the previous paragraph. At each point the
three values of deformation parameters (primitives or
measures) are computed from the maximum undetect-
able errors in all observations; i.e. 3n values per point for
all n points. If desired, the observations responsible for
the largest values of deformation measures can also be
easily identified.

The maximum absolute value of each deformation
primitive at the point is the measure of robustness of the
network, i.e. network robustness is characterized by
three real numbers for each point. These numbers can be
plotted in three maps to give us a visual aid. We speak of
network robustness in scale, robustness in configuration
and robustness in twist. It makes sense to plot the pa-
rameters in parts per million. These units make it easy to
compare robustness measures against relative errors in
observations which are normally also expressed in parts
per million. We note that the larger the absolute value of
the deformation parameter, the less robust is the net-
work at that point; a robust network will display small
values of deformation primitives.

It should be obvious from Eq. (30) that the location
of the extreme robustness points (points of maximum
and minimum robustness) is independent of the choice
of o, or f,. The non-centrality parameter A,, whose
magnitude depends on this choice, is a multiplier com-
mon to all three deformation primitives and thus con-
trols only the magnitudes of those primitives without
affecting their relative behavior. Realistic choice of these
two probabilities will become important when we want
to design tolerance limits for network robustness, or
rather the lack of it.

7 Examples

In order to illustrate the differences between traditional
covariance analysis and robustness analysis, we have
examined a simple synthetic horizontal network, shown
in Fig. 2. The network consists of 11 points, one of
which (point 1) is fixed, 19 distances, 38 directions, and 1
azimuth. The distances were assigned realistic standard
deviation of 3 mm + 2 ppm while the directions were
assigned a standard deviation of 0.5”. The datum
orientation was defined by the azimuth with a standard
deviation of 1”.

The traditional covariance analysis of the propaga-
tion of random errors is depicted by the absolute and
relative confidence ellipses shown in Figs. 2 and 3, re-
spectively. These ellipses are based on a significance level
of 5% (confidence level of 95%). The absolute error
ellipses show the propagation of errors outward from
the fixed point (1) in the network. From the orientation
of the ellipses, the distances are slightly more accurate
than the directions — the ellipses are smaller along the
direction to the fixed point. The relative ellipses show
similar characteristics locally. The error ellipses are all

roe@
DA N OL,
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10 km W, :
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1

Ellipse Scale

Fig. 2. Absolute 95% confidence ellipses. Dashed lines represent
observed lines (distances and/or directions) in the network

L10km | VN
Network Scale CD s

_05m ‘Q ©)
Ellipse Scale YN

A 11

Fig. 3. Relative 95represent observed lines (distances and/or direc-
tions) in the network

flattened along the line connecting the end points, indi-
cating that the distances are more precise than the di-
rections. Again, the ellipses are larger for longer
distances, as expected. From this covariance analysis it



appears that only the bottom of the network is signifi-
cantly weaker in terms of random errors than the other
parts, primarily due to the longer distances between
points. We have included the results of covariance
analysis here to illustrate numerically the fact that it
shows a different aspect of the network from that of
robustness. As covariance and robustness analyses ad-
dress different aspects of the network, nothing more
should be read into this comparison.

The robustness analysis quantifies the propagation of
potentially undetected blunders. This is depicted by the
three deformation primitives in Figs. 4, 5, and 6. All
three figures indicate that the top and bottom areas of
the network are the weakest in terms of the effect of
potential blunders on the coordinates estimates. Errors
of approximately 5-6 ppm in orientation, configuration,
and scale can be expected in these areas. Notice that the
smallest robustness is obtained for point 1, the fixed
point. The center part of the network is clearly the
strongest, primarily due to the larger number and more
favorable geometry of observations among these points.
Clearly the greater observational redundancy in this
area makes these points more resistant to potential
blunders.

In order to illustrate how robustness analysis works
with real networks, we show another example from the
Canadian province of Newfoundland. This time we have
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Fig. 4. Robustness in orientation (differential rotation) in ppm.
Dashed lines represent observed lines (distances and/or directions)

in the network
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chosen a real global positioning system (GPS) network
consisting of 104 points with 786 observed coordinate
differences — see Fig. 7. The robustness measures are
shown in Figs. 8-10 and summarized in Table 1.

First, we may observe that the network as a whole is
quite robust, as we might expect. Next, we note that
robustness of points 11, 69, and 70 is undefined. This is
because these points are linked to the rest of the points
by only one observation tie — see the discussion at the
end of Sect. 4. Finally, we note that the southwestern
part of the network is the least robust in all three ro-
bustness measures. It is only by coincidence that one and
the same point (78) is the least robust in all three mea-
sures. Most often, the points least robust in the three
measures are different.

8 Conclusions and recommendations

The combination of reliability analysis with geometric
strength analysis has resulted in the conception of a new
technique, robustness analysis, which is a natural merger
of the two existing techniques. Experiences with robust-
ness analysis show that it is a very powerful technique,
capable of providing a picture of the analyzed network
which is complementary to the one furnished by the
standard covariance analysis. ‘“Network robustness”
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Max Twist Strain = 25.69 ppm, Point # 78

Fig. 8. Surface plot of robustness in twist for Newfoundland GPS
network

Max Shear Strain = 27.77 ppm, Point # 78

Fig. 9. Surface plot of robustness in shear for Newfoundland GPS
network

(strength, as an ability to resist deformations induced by
undetectable blunders, might be a term more readily
understood) is invariant with respect to coordinate shifts
and orientation, and almost invariant with respect to

scale changes.
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Fig. 7. Newfoundland GPS network.
Connections between points represent
observed GPS baselines



Max Scale Strain = 38.51 ppm, Point # 78

Fig. 10. Surface plot of robustness in scale for Newfoundland GPS
network

Robustness is expressed in terms of three independent
deformation measures, namely, robustness in scale (di-
lation), local configuration (shear), and twist (differen-
tial rotation). It thus makes no sense to talk about
robustness in general but only about “‘robustness in
scale”, ““robustness in shear”, and “‘robustness in twist”.
This will sound complicated to a surveyor uninitiated in
the concepts of deformation analysis, where the three
primitives are used routinely. Let us emphasize here that
the full description of a deformation cannot be achieved
with fewer than three measures. If we wish to deal with
network strength meaningfully, then we have to accept
this fact and learn to live with it. It seems to us that the
introduction of robustness analysis will require some
educational effort; specifically, a guide/manual will have
to be written with the aim to assist in the transfer of
knowledge. We recommend that robustness analysis be
used side-by-side with the standard covariance analysis
for a complete network analysis in the future, and that
national specifications for accuracy standards be
extended to include robustness analysis.

As we have seen, it is not always easy, or even pos-
sible, to guess at the reason behind a specific weakness in
the network from the network configuration alone.
More experiments should be conducted with robustness
analysis, and more experience gained with practical ap-
plications as well as the interpretation of robustness
analysis results, particularly before specific values of
robustness tolerance limits can be imposed through
specifications. Some general criteria, however, can al-
ready be formulated, and these have been spelled out
above. The robustness of a planned network, a robust-
ness pre-analysis, may prove to be more important than
a post-analysis of an already established network. A
better graphical representation of robustness measures is
a must.

A strategy is being worked out to deal with the two
kinds of singularities that may arise in robustness
analysis. While the generic singularity associated with
the extreme weakness of the network has so far been
shown by relatively large values of the robustness
primitives, geometrical singularities have been simply
eliminated by leaving out the singular points and noting
them in the output. More worrisome is the case of
geometrical near-singularities. A measure of ill-condi-
tioning based either on confidence regions for strength
measures or on the value of the determinant in the LS
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Table 1. Robustness measures for Newfoundland GPS network

Point Twist (ppm) Shear (ppm) Scale (ppm)
1 -0.8 0.8 1.0
2 1.0 1.6 2.9
3 -1.0 1.2 1.5
4 0.8 1.0 1.5
5 4.7 5.2 5.6
6 0.6 0.9 1.5
7 -0.7 1.1 1.4
8 0.6 0.7 0.9
9 0.5 0.5 0.9

10 0.7 0.8 1.1

11 undefined undefined undefined

12 1.0 1.1 2.1

13 -0.8 3.8 7.2

14 -0.5 0.6 1.0

15 -0.7 1.2 1.0

16 -1.1 33 1.0

17 -0.7 1.4 2.7

18 -0.6 0.9 1.2

19 0.6 0.6 1.0

20 4.5 4.9 5.9

21 -1.0 1.0 1.3

22 1.0 1.0 1.1

23 1.9 1.9 1.6

24 -2.3 2.3 2.2

25 -1.1 1.2 1.2

26 -0.8 0.8 0.9

27 -0.4 0.9 1.8

28 0.4 0.5 0.8

29 0.5 1.2 2.2

30 1.1 73 14.2

31 1.1 2.6 4.8

32 0.5 0.8 1.1

33 0.7 0.7 0.9

34 -0.4 0.8 1.0

35 -6.3 6.5 5.4

36 -0.5 0.6 1.0

37 -2.3 4.2 7.6

38 0.5 0.7 1.3

39 -0.3 0.4 0.7

40 0.4 0.4 0.6

41 0.7 0.8 0.9

42 1.9 2.1 2.5

43 -0.6 0.7 1.1

44 0.3 0.4 0.8

45 0.4 0.4 0.6

46 -0.4 0.4 0.6

47 -0.8 0.9 1.1

48 0.4 0.7 0.9

49 3.2 5.4 9.7

50 -1.0 1.4 1.9

51 -1.7 2.1 1.0

52 -0.2 0.5 0.4

53 -3.6 39 2.3

54 0.5 0.8 0.9

55 0.4 0.8 0.4

56 0.4 1.5 1.2

57 0.6 0.7 0.9

58 -1.0 1.2 1.8

59 -3.0 5.2 6.9

60 1.0 1.0 1.2

61 1.5 2.2 4.4

62 0.5 0.6 0.9

63 0.6 0.7 0.6

64 -1.2 1.3 2.2

65 0.8 1.0 1.1

66 -1.1 2.1 3.1

67 0.9 1.0 1.0
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Table 1. (Contd)

Point Twist (ppm) Shear (ppm) Scale (ppm)
68 -1.1 1.1 0.8
69 undefined undefined undefined
70 undefined undefined undefined
71 1.5 1.5 1.3
72 -0.9 1.1 1.5
73 1.6 1.7 2.0
74 1.4 1.5 2.4
75 -3.4 3.7 4.1
76 12.1 12.3 14.3
77 -4.9 5.2 4.1
78 25.7 27.8 38.5
79 5.5 6.0 8.6
80 -9.9 11.2 12.4
81 0.5 0.6 0.9
82 0.6 0.7 1.2
83 -0.7 1.2 2.3
84 -0.5 0.6 0.7
85 -0.8 0.9 1.2
86 0.6 0.8 1.4
87 5.0 5.1 6.0
88 -1.3 1.3 1.2
89 -0.5 0.6 1.0
90 -1.5 1.9 3.0
91 -1.1 1.1 1.1
92 0.9 3.7 4.6
93 -0.5 1.2 1.1
94 -6.7 10.7 10.6
95 -6.7 10.6 10.6
96 -0.5 0.8 0.8
97 -2.5 4.3 7.7
98 -1.2 14 1.1
99 -0.7 0.7 0.8

100 -15.9 16.4 12.3

101 2.9 3.6 53

102 -0.9 2.8 1.9

103 -0.7 1.5 1.9

104 0.8 0.9 1.0

fitting of planes in the determination of strain matrices
should be devised.

Some refinement of the reliability analysis as the first
part of robustness analysis is also called for in order to
understand better the role of the probabilities (signifi-
cance levels) used in the univariate and multivariate tests
and their impact on the non-centrality parameter A. An
attempt to understand the total picture of how those
probabilities work was made and illustrated with nu-
merical examples in Craymer et al. (1993a,b, 1995),
Szabo et al. (1993), and Krakiwsky et al. (1993, 1999).
Even though a thoughtful selection of the f3, probability
was not necessary in our investigations — f§, affects only
the scale of the robustness plots — it will become neces-
sary for formulating the robustness tolerance limits. This
point should also be further investigated.
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Appendix

Proof of invariance of strain primitives under rotation
of coordinate system.

Consider two analyses of a network, the first using
coordinate system (x,y) where [cf. Eqgs. (6) and (7)]

w= ] =[] A
- [ o] 2

The second analysis uses coordinate system (x*,)*),
rotated by Q with respect to (x,y), so that

Ax = [ui] :R(Q)[ui] _ { cos Qu; + sin Qu;
U;

v; —sin Qu; +cosQu;
(A3)
« | Ou*/Ox*  Ou*/0y*

E; = { ov*/ox* vt /dy* |, (A4)
Now, using the chain rule for differentiation
Ou* /ox* = Ou” /Ox - dx/dx* 4 Ou* /Oy - dy/dx” (AS)
where
dx/dx* =cosQ, dy/dx" =sinQ (A6)
and
Ou*/0x = cos Q 0u/0x + sin Q Ov/0x (A7)
Ou* /0y = cos Q0u/dy + sin Qdv/dy (A8)
Therefore
Ou* Jox* = cos® Q0u/dx — cos Q sin Qdv/dx

+ cos Q sin Qdu/dy + sin> Qdv/dy (A9)
Similarly, for the other differentials
ou* /oy* = — cos Q sin Qdu/0x — sin” Q dv/dx

+ cos® Q0u/dy + cos Q sin Qdv/dy (A10)
Ov* /ox* = — cos Q sin Qdu/dx + cos> Qdv/dx

— sin® Qdu/dy + cos Q sin Q dv/dy (A1)
ov* /dy* = sin® QOu/dx — cos Q sin Qv /dx

— cos Q sin Qdu/dy + cos® Qdv/dy (A12)

Substituting these expressions into the anti-symmetric
part of the strain matrix in the rotated coordinate system
gives [cf. Eq. (11)]



« |0 —of
a0 (A13)
where
o :%(Gv*/ax’k — 0u*/oy")
:%(Gv/ﬁx— Ou/dy) = w (A14)

The anti-symmetric strain matrix and thus even the
differential rotation are therefore invariant under a
rotation of the coordinate system.

The mean shear (o) and complete shear (y) strain
primitives can also be shown to be invariant under ro-
tation. Mean strain transforms as

! (Ou* /Ox™ 4+ Qv* /Oy*) = !

o' =

(Ou/ox +0v/0y) =0
(A15)

|
N

Pure and simple shear read, in the rotated coordinate
system

T = — (Qu* Jox* — Ov* /Qy*) = cos> Q1 + sin’ Qv

(A16)

1 .
v = E(Gu*/ay* + 0" Jox") = cos? Qv —sin’ Q1 (A7)
Complete shear then transforms as
1 1
V*:E /1*2_'_\)*2:54/,52_‘_‘)2:))

Thus, all three strain primitives (o, o, y) are invariant
under a rotation of the coordinate system.

(A18)
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