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INTRODUCTION

Craymer and Vaníc˘ek [1986] performed a multiple linear
regression analysis on the levelling data from the 1981 field
test for levelling refraction reported by Stein et al. [1986].  Our
analysis revealed that in addition to differential refraction,
turning point settlement and an effect dependent on height
differences are also present in the discrepancies of the section
height differences from forward and backward runnings.  Stein
et al. [1986] dismiss our results arguing that (1) the
independent variables used in a multiple regression analysis
must be statistically uncorrelated and that any statistically
significant correlation invalidates a multiple regression
analysis,  (2) our results are not “robust” due to the correlation
between two of our independent variables (section height
difference dH and number of turning points tp) when two
sections are deleted from the data sample, and (3) our
conclusions are “untenable” because dH and tp are positively
correlated, whereas the estimated regression coefficients have
opposite signs.

We believe that these comments are unjustified and would
have responded to them in our paper had we been given the
opportunity to review theirs prior to publication (there was no
reference to our work in the manuscript supplied to us by R.
Stein prior to publication).  We will therefore show here that
their arguments are not based on correct statistical theory.  In
addition, we will also address a few more questions raised in
their reply to our rebuttal [Stein et al., this issue].

MULTIPLE REGRESSION AND COLLINEARITY

The problem of linear correlation between two independent
variables is well known in multidimensional regression
analysis.  The terms collinearity, multicollinearity, and ill-
conditioning are all used to denote this situation [Neter and
Wasserman, 1974, p. 339; Belsley et al., 1980, p. 85; SAS
Institute Inc., 1985, p. 672].  The latter, however, is preferred
since it more precisely describes the problem as a numerical
one.  In fact, most of the diagnostic tools used for detecting
collinearity are from the field of numerical analysis.
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It is true that theoretically it becomes difficult to separate the
effects due to highly collinear variables in a multiple
regression.  Collinearity among the independent variables
results in a matrix of normal equations whose ill-conditioning
simply causes the estimated regression coefficients and their
covariance matrix to be numerically unstable [Belsley et al.,
1980, p. 96].  In its limiting form, perfectly correlated or
collinear variables cause the matrix of normal equations to
become singular, and no regular solution can be computed.  The
presence of correlations among the independent variables
shows in the covariance matrix of the estimated multiple
regression coefficients.  Large correlations will inflate both the
diagonal (i.e., errors in regression coefficients) and off-
diagonal (i.e., correlations) elements of the covariance matrix
[Belsley et al., 1980, p. 115; Neter and Wasserman, 1974, p.
341].

The question of concern, however, is whether the magnitude
of this correlation is large enough to significantly affect our
results (i.e., the estimates of the regression coefficients) and
not just whether the correlations among the independent
variables are statistically significant, as Stein et al. [1986]
contend.  A review of the literature on this topic will reveal that
the independent variables must be highly correlated before
instabilities may be expected to occur in the estimates of the
regression coefficients (see, e.g., Neter and Wasserman [1974,
p. 341] and Belsley et al. [1980, p. 86]).  In their introductory
book on regression analysis, Neter and Wasserman [1974, p.
341] state

The fact that some or all independent variables are correlated among
themselves does not, in general, inhibit our ability to obtain a good fit nor
does it tend to affect inferences about mean responses or predictions of
new observations, provided these inferences are made within the region
of observations.

In practice, statisticians do not worry about such correlations
until they are of the order of about 0.9 [Belsley et al., 1980, p.
94, 153; M.S. Srivastava, Department of Statistics, University
of Toronto, personal communication, 1986].  Clearly, this is
not a problem in our analysis where correlations are less than
0.5, even when the data sample is altered by deleting sections
57 and 58 as suggested by Stein et al. [1986].

Collinearity is more reliably identified by examining the
eigenvalues of the matrix of normal equations.  In the presence
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of collinearity, some of the eigenvalues will be very small.
Belsley et al. [1980] assess “smallness” using condition
numbers defined as the square root of the ratio of the largest and
smallest eigenvalues.  When this number is very large, the
problem is ill-conditioned and collinearity is said to exist.
Based on experimental evidence, Belsley et al. [1980, pp. 105,
112, 153] associate weak dependencies with condition numbers
around 5 or 10 and moderate to strong relations with condition
indices of 30 to 100.  Only when condition indices are of the
order of 100 do they consider any great potential harm to the
regression estimates.  Our results exhibit no large condition
numbers.  In fact the largest condition number is 4 (obtained
when sections 57 and 58 are omitted), typical of only a weak
dependency.  Thus the comments by Stein et al. [1986]
regarding the incorrect application of multiple linear
regression in the presence of moderate correlation are erroneous
as they now realize.

INFLUENTIAL OBSERVATIONS

In their second comment, Stein et al. [1986] argue that by
removing “just” one and two sections, the correlation between
the section height difference dH and number of turning points
tp becomes statistically significant.  They conclude from this
that our results are not “robust.”  However, as explained above,
it is not the existence of statistically significant correlations
but their magnitude that influences the regression solution by
causing numerical instabilities in their estimation.  As we have
shown, there is no evidence of significant collinearity or
ill-conditioning in our results even when the two disputed
sections are deleted from the data sample.

Stein et al. [this issue] further argue that the regression
coefficient for dH depends on the two sections in question.
This is simply not true.  We have already shown in our paper
that removal of section 57 (or any section for that matter) from
the multiple regression analysis does not change the values of
the estimates at any reasonable significance level.  Only the
variances and correlations among the regression coefficients
actually become larger.  The absolute value of correlation
between the regression coefficients for dH and dt increase from
0.61 to 0.77.  The variances and correlations become even
larger when both sections 57 and 58 are removed from the
sample: the absolute value of correlation between regression
coefficients for dH and dt increases to 0.87.  Although the
deletion of both sections 57 and 58 increases the level of
multicollinearity and ill-conditioning in the regression
estimation, the actual regression coefficients do not change
greatly contrary to the claim by Stein et al. [this issue].  This is
in complete agreement with the passage quoted from Draper and
Smith [1981, p. 170] by Stein et al. [this issue] which states
that the fit of the model (i.e., regression coefficients and not
just their statistical significance) must be greatly affected by
the deletion of one or two observations before they can be
considered for removal.  Thus there is little evidence to support
the removal of the two sections in dispute.

The deletion of sections 57 and 58 from the analysis should
also be resisted from the physical point of view.  It is precisely
these sections (the only ones proceeding downhill) that enable
the regression analysis to reliably resolve the effects due to dH
and tp.  Although more such observations would have been
better, the lack of abundance of levelling downhill should not
be taken as justification for removing those we have.  These

sections effectively act as a basis for comparison with the
uphill levelling.  Calling these sections “outliers” is also
incorrect (“influential” observations is used in conventional
statistical terminology) and falsely implies they are
contaminated by blunders or gross errors: there are no blunders,
the levelling simply went downhill!  We wish to make the
point that we would consider it most improper to eliminate any
event from a given sample unless it can be shown conclusively
that a blunder (mistake) occurred in the levelling observations.
Each event represents a unique set of circumstances that a
successful model must be capable of explaining.

The statement by Stein et al. [1986] that “just” one or two
sections would be removed is also misleading.  In fact, each
section is composed of hundreds of observations of the
levelling rods!  Summing together the number of setups in
these sections, one finds that “only” one or two sections
actually amounts to 46 or 78 setups (184 or 312 individual
observations), respectively!  Contrary to what Stein et al.
would have us believe, this is indeed a significant portion of
the sample which should not be dismissed so lightly.
Moreover, every such “event” in levelling is a result of a series
of measurements subjected to repeated internal testing to
prevent any blunders from occurring.  Stein et al. [this issue]
contend that this testing is performed only for individual setups
and that a disturbance of an individual instrument setup or
turning point will not be detectable.  This is only partially not
true, for an error caused by a disturbance of the instrument would
be fully apparent in the differencing of the high-low scale rod
readings.  Although a disturbance of a turning point will indeed
go undetected in this check, it is precisely these systematic
errors that we are accounting for and successfully resolving in
our regression model.

In our opinion no event should be eliminated unless there is
good physical evidence to show that it is affected by blunders.
A proposed model should be capable of modelling all events.  If
the data do not fit a model, the model should be modified, not
the data.  By eliminating one, two, four, six events (when does
one stop?), one can statistically prove almost anything.

CORRELATION AND REGRESSION COEFFICIENTS

In their final comment, Stein et al. [1986] state that positive
correlation between dH and tp makes our conclusion that the
regression estimates have opposite signs “untenable.”  This is
true only for simple linear regressions (i.e., regressions using
only one independent variable) or for multiple regressions
where the independent variables are completely uncorrelated
with each other.  It is not generally true for multiple
regressions when the independent variables are correlated even
moderately.  The correlation coefficients are based on
individual simple regressions of the dependent variable on each
independent variable and not on a multiple regression with all
variables.  In a multiple regression the sign of the regression
coefficients do not depend solely on the correlation
coefficients; other correlations must also be taken into
account.

It is relatively easy to prove this mathematically.  Consider,
as an example, a linear regression (including the intercept term)
of a dependent variable z on two independent variables x and y.
Let rzx and rzy represent the correlation coefficients between z
and the independent variables x and y, respectively, and rxy the
correlation coefficient between the independent variables
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themselves.  The regression coefficients bx and by may then be
expressed in terms of the correlation coefficients as [Edwards,
1979, p. 45]

bx =  
sz (rzx − rzy rxy)

sx (1 −  r xy
2)

by =  
sz (rzy − rzx rxy)

sy (1 −  r xy
2)

where sx, sy, and sz are the sample standard deviations of the two
independent variables x and y and of the dependent variable z,
respectively.  Clearly, the three quantities r xy, r zx, and r z y
govern the sign of bx and by (note that sx, sy, sz, and rxy

2 are all
positive), not just the sign of r xy as implied by Stein et al.
[1986].  For example, when rxy is positive and rzx and rzy are of
opposite signs, the regression coefficients (bx and by) will also
be of opposite signs.  In our regression model with three
independent variables (two of which are moderately correlated)
and no intercept, the expressions for the regression estimates
in terms of correlations will be even more complicated (each
involving four correlation coefficients) and difficult to predict.

Clearly, one cannot predict the signs of the regression
coefficients from their correlations with the dependent variable
alone as Stein et al. [1986, this issue] would have us believe.
Our results are obtained from the popular SAS software, which
has been thoroughly tested and routinely used for such
problems [see SAS Institute Inc., 1985].  Moreover, these
results agree exactly with those from our own independently
developed software used by Craymer and Vaníc˘ek [1986].  The
fact remains that the regression coefficients for dH and tp are
statistically significant and of opposite sign.

PARTIAL CORRELATION COEFFICIENTS

In their reply, Stein et al. [this issue] also argue that because
of the lack of correlation between the discrepancy (dependent
variable) and dH and tp (independent variables), these effects
should be left out of the model.  What they fail to mention,
however, is that the effects are indeed statistically significant
in a multiple regression.  This oversight results from their
apparent misunderstanding of the correlation coefficient and its
use.  Throughout their reply they use both the terms correlation
and partial correlation for the same statistic.  The actual
statistic used by them is the correlation coefficient, not the
partial correlation coefficient as they claim!

The correlation coefficient is not based on a multiple
regression but only on a simple regression of the dependent
variable on a single independent variable without any
consideration of the others.  It measures the reduction of the
total variance of the dependent variable when only one specific
variable alone is entered in the model.  The partial correlation
coefficient, on the other hand, is based on a multiple
regression.  It is a measure of the reduction in the total variance
that results when each independent variable is entered into the
model in sequence [see Draper and Smith, 1981, p. 265].  Only
when the independent variables are completely uncorrelated are
the simple correlation and partial correlation coefficients the
same.

In our model, two of the independent variables are moderately
correlated.  Thus, contrary to Stein et al. [this issue], the

correlation coefficients between the dependent and independent
variables cannot properly describe the effect of each
independent variable on the full model.  We would expect the
correlations for dH and tp to be small, as Stein et al. [this issue]
have found, due to the much larger effect of refraction which
“swamps” the others.  Examining the actual partial correlation
coefficients (the values listed in Table 1 of Stein et al. [this
issue] are just correlations), one finds that for the turning point
and height difference variables in our model, the partial
correlation coefficients are 0.13 and 0.28, respectively (see
Table 1), not -0.06 and -0.08 as Stein et al. claim.

The partial correlation coefficient is also not without its
problems however.  In particular, the coefficients depend on the
order in which the independent variables are entered into the
model [Edwards, 1979, p. 49].  A better statistic is the type II
partial correlation coefficient used by SAS (the former is
referred to as type I).  This is a measure of the reduction in the
total variance that results from the addition of an independent
variable when all others are included (conversely, it can also be
described as a measure of the increment in the total variance
when a variable is removed from the full model) [SAS Institute
Inc., 1985, pp. 9 and 660].  In our model, we get values of 0.27
and 0.28 for type II partial correlations corresponding to d H
and tp, respectively.  When using correct statistical procedures,
we therefore find that there is indeed a strong and statistically
significant correlation when the other variables in the model
are also considered.  The correlation coefficients quoted by
Stein et al. [this issue] are meaningless in multiple regression
problems and explain their erroneous conclusions regarding the
significance of the turning point settlement and height
difference variables.

It is important to realize that partial correlations are used in
the context of multiple regressions only as a crude indicator of
which variable to select next in a forward stepwise approach to
building the regression model (see, e.g., Draper and Smith
[1981, pp. 307-310]).  They are not used to test whether a
specific variable is statistically significant and should remain
in the model.  The variable with the largest (not necessarily
statistically significant) partial correlation is simply the next
one to add into the model.  Once a new variable is found, it is
then tested to see if it results in a statistically significant
reduction in the total variance of the dependent variable.

The test used for assessing the statistical significance of an
independent variable is the partial F test which is identical to
the t test on the individual regression coefficients [Draper and
Smith, 1981, pp. 101-102].  This test is mandatory in multiple
regression problems as it accounts for all the independent
variables, whereas the correlation coefficients (simple or
partial) do not.  We have given the confidence levels for these
tests [Craymer and Vaníc˘ek, 1986] and show that the estimated
regression coefficients in our model (i.e., refraction, turning
point settlement, and height difference) are all statistically
significant the the 95% level (see Table 1).

Finally, we wish to point out that contrary to the assertions
in Table 1 of Stein et al. [this issue], Craymer and Vaníc˘ek
[1986] never used partial correlations.  We consider it improper
for them to attribute these quantities to us, especially when
their values are wrong!  We therefore computed the correct
values and give them here in our Table 1.  Craymer and Vaníc˘ek
[1986] did not include them because we did not use a forward
stepwise approach to build our model.  Instead we used a
backward stepwise method [see Draper and Smith, 1981, pp.



TABLE 1.  Comparison of Multiple Linear Regressions on Discrepancy Between Forward and Backward Section Runnings With and Without an
Intercept “int”

Cumulative Regression Standard Partial Type I Partial Type II Partial Total F Test
Model Magnitude Coefficients Deviation F Test Correlation Correlation and R2

All data used
ref 13.6 mm 4.6x10-5 mm/m3 °C 0.5x10-5 99.99% 0.77 0.77 99.99%
tp 20.3 0.014 mm/tp 0.006 96 0.13 0.27 0.61
dH -14.2 -0.026 mm/m 0.012 97 0.28 0.28

int 25.3mm 0.421 mm/section 0.169 98% n/a n/a 99.99%
ref 13.5 4.6x10-5 mm/m3 °C 0.5x10-5 99.99 0.76 0.77 0.60
dH -15.7 -0.029 mm/m 0.012 98 0.31 0.31

Sections 57 and 58 omitted
ref 12.2 mm 4.5x10-5 mm/m3 °C 0.5x10-5 99.99% 0.77 0.75 99.99%
tp 9.2 0.007 mm/tp 0.011 45 0.05 0.08 0.59
dH -6.6 -0.011 mm/m 0.022 37 0.07 0.07

int 18.1 mm 0.313 mm/section 0.234 81% n/a n/a 99.99%
ref 12.3 4.5x10-5 mm/m3 °C 0.5x10-5 99.99 0.76 0.76 0.59
dH -11.8 -0.020 mm/m 0.019 70 0.14 0.14

“ tp” represents the turning point argument used in modelling the settlement effect, “dH” the height difference, and “ref” refraction.  See Craymer
and Vaníc˘ ek [1986] for the derivation of these arguments.  Note that the partial correlation coefficients given here are correct.  The values quoted by
Stein et al. [this issue] are actually simple correlation coefficients.  Note also that for the models with two sections deleted, the cumulative effects of
the variables will be smaller.

305-307; Neter and Wasserman, 1974, p. 386; SAS Institute
Inc., 1985, p. 765].  In this approach, all variables are included
in the multiple regression model.  The partial F test is then used
to check the statistical significance of each variable.  The one
with the least significant partial F is omitted from the model
and new partial F computed.  This is repeated until the partial F
for all variables are statistically significant.

In spite of Stein et al.’s [this issue] arguments, the fact
remains that the regression coefficients in our model are
statistically significant.  This is proof positive that a multiple
linear association exists between the discrepancy and the
independent variables describing refraction, turning point
settlement, and an effect dependent on height difference.

INTERCEPT VERSUS SETTLEMENT

Stein et al. [this issue] also question the absence of the
intercept (or absolute term) in our regression model.  We have
not taken the “blind” regression approach of simply adding
parameters into our model that may have no physical meaning.
Instead, we have used an approximation approach where we
develop a model based on established physical principles.  We
know of no such principle which would argue for including such
a constant effect in our model.  The presence of a constant term
makes no physical sense to us in the context of levelling.
Although the intercept is statistically insignificant when
included in the model, as suggested by Stein et al. [this issue], a
closer look at the results reveals a strong collinear relation
(correlation of -0.9) between the intercept and tp.  This causes
the estimation to become ill-conditioned and, as explained
earlier, inflates the variances of the estimates making them
appear statistically insignificant.  Consequently, Stein et al.’s
conclusions based on this near singular model are statistically
unsupportable.

Clearly, these highly collinear variables (intercept and tp)
are accounting for the same effect in the model, and only one of

them should be used.  Further evidence for this can be found by
comparing our regression model (without the intercept) with
one where the intercept is substituted for tp (see Table 1).  From
the results it can be seen that both models give statistically
identical numerical results; either the intercept or tp can be used
without  significantly influencing the other regression
coefficients.

Having to choose between either the intercept or the turning
point variable, we have taken the later for the simple reason
that we have a physical explanation for its existence.  As stated
by SAS Institute Inc. [1985, p. 712], “Effective model building
requires substantive theory to suggest relevant predictors and
plausible functional forms of the model.”  Craymer and Vaníc˘ek
[1986] have shown that one must expect the presence of a
settlement effect.  Moreover, the magnitude of the effect agrees
well with independent field tests as reported by Craymer and
Vaníc̆ek [1985] and Vaníc̆ek et al. [1985].  On the other hand,
we cannot conceive of any reason why the intercept should be
present.

Trying to justify the inclusion of the intercept, Stein et al.
[this issue] define the intercept as the “mean divergence per
section.”  However, the proper definition for the intercept is
simply the “y intercept” where “y” is the axis for the dependent
variable (discrepancy).  In other words, it is the value of the
discrepancy when the independent variables (refraction, turning
points, and height difference) are all zero.  Although we could
argue for a discrepancy when we have zero dH and refraction, we
cannot imagine any physical justification for the existence of a
discrepancy when there are zero turning points (i.e., no
levelling)!  We think it makes much more sense to constrain
the intercept to zero in the model which must have, by
definition, a zero discrepancy for zero turning points.

OTHER COMMENTS BY STEIN ET AL.

Stein et al. [this issue] state that tp and dH explain 9% of the
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variance in the discrepancy, whereas a much greater proportion
(61%) is explained when refraction is also included.  They
claim, without explanation, that this is due to tp and dH having
correlations of opposite sign to their corresponding regression
coefficients.  This is completely irrelevant.  The reason why tp
and dH explain much less of the variation than refraction does
is because the later effect is much larger and has been purposely
amplified by the design of the experiment.  We would then
naturally expect refraction to be the dominate effect in the
variance of the discrepancy.  Furthermore the 9% reduction in
variance is indeed a statistically significant amount with a
confidence level of 99.99% [see Craymer and Vaníc˘ek, 1986,
Table 2].

Stein et al. [this issue] also argue that a simple regression on
refraction alone explains 56% of the variance, almost the same
amount as our model.  This too is misleading since this simple
model included the intercept which, as we have shown above, is
accounting statistically for the same basic effect as tp.  This
simple regression model is statistically equivalent to a multiple
regression model with the refraction and tp variables but
without the intercept.

The claim by Stein et al. [this issue] that less than 0.7% of
the variation is explained by tp is also without merit as this
argument is again based on a simple correlation, not a partial
correlation.  As explained above, it does not account for the
effect of the other variables, particularly dH which is correlated
with tp.  The actual reduction in variance explained by each of
the variables in a multiple regression is, by definition, given
by the square of the partial correlation coefficients.  For tp and
dH, we find that they explain 7% and 8% of the variation in the
discrepancy, respectively, when the other effects are included in
the model (i.e., type II partial correlations).

Finally Stein et al. [this issue] claim it is “impermissible”
that only 7% of the observation fall within the ±1 σ  error
envelope for the trend on dH.  However, they fail to explain
why or what the implications are.  What is impermissible is the
direct comparison of “apples” (observations) and “oranges”
(regression parameters); these are completely different
quantities with different stochastic properties which cannot be
directly compared.  The ±1 σ envelope is for the trend, not for
the observations as Stein et al. imply.  All one can say, based
on the data sample, is that 67% of the time the trend on tp (not
the observations) will fall within this confidence region.

DIFFERENTIAL ROD SCALE ERROR

We wish to take this opportunity to amend one of our
conclusions.  In our paper, we attributed the dependence of the
F-B discrepancy on the section height difference to a
differential rod scale error (by differential rod scale error we
mean the difference in rod scale when observing different parts
of the rod).  Over the steady sloping terrain of this field test,
the short (SSL) and long sight length (LSL) runnings
consistently observe the middle and end parts of the rod scales,
respectively.  Any difference in rod scale between the middle
and end of the rods would, we thought, show up in the
discrepancy.

It now seems that we were incorrect in linking this effect
directly with the section height difference (dH).  Prior to this
comment/reply exchange, R.S. Stein [U.S. Geological Survey,
Menlo Park, California, personal communication, 1987]
notified us that in this experiment the SSL running was not

consistently used in either the F or B directions.  Thus the error
would have different signs depending on whether the SSL
runnings were in the F or B direction.  Realizing this, we
developed a new argument to properly account for a possible
differential rod scale error.

Our original expression describing the differential rod scale
effect on the F-B discrepancy is written as [Craymer and
Vaníc̆ek, 1986, equation (21)]

(λF − λB) dH = dλ dH

where λF and λB are the rod scale errors in the F and B runnings,
respectively, dλ is the differential rod scale error, and dH is the
average section height difference.  When the SSL coincides
with the F running the error dλF is given by

dλF = (λS − λL)

where the subscripts S and L refer to the SSL and LSL runnings,
respectively.  However, when the SSL coincides with the B
running, the error dλB becomes

dλB = (λL − λS) = −dλF

In order to resolve this sign difference, we simply use a new
variable equal to dH when SSL coincides with the F running and
-dH when it coincides with the B running.  We therefore end up
with new differential rod scale variable whose coefficient cλ is

cλ = dλ = (λS − λL)

When we consider this new argument in our multiple
regression model, its coefficient is not statistically significant
at any reasonable significance level.  However, the difference
in height (dH), turning point, and refraction arguments remain
as statistically significant as before.  Although we cannot
justifiably attribute the coefficient for dH to a differential rod
scale error, the statistical dependence of the F-B discrepancy on
dH remains very real.  Stein et al.[this issue] think this is “at
odds” with our treatment of the intercept; we point out that we
have an alternate variable (tp) that explains the same basic
effect as the intercept but is also physically meaningful.
Unfortunately, we have no such alternate variable for dH.
Clearly, the physical explanation will require further thought.

CONCLUSIONS

Despite the attempts by Stein et al. [1986, this issue] to
discredit our analysis and conclusions, the fact remains that the
regression coefficients for the effects of refraction, turning
point settlement, and an effect dependent on section height
difference are statistically significant.  We have shown that the
intercept accounts for the same basic effect as the turning point
variable.  Having the choice of one or the other, we have
chosen the later as we have a good physical explanation for it.

The deletion of two sections from the data sample does not
greatly affect the magnitudes or signs of the settlement and
height difference effects even though their statistical
significance is reduced.  We agree that these sections are
important in strengthening the resolution of these effects,
however, they actually represent a total of 312 individual
observations which must not be dismissed lightly as “just one
or two” observations.

In conclusion, it is important to realize that one must expect
the presence of rod settlement in the F-B discrepancies between
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the forward and backward runnings of a section as shown by us
and others [e.g., Craymer and Vaníc˘ek, 1985; Anderson, 1983;
D.S. Schneider, Federal Office of Topography, Bern,
Switzerland, personal communication, 1981].  In fact, our
results agree extremely well with those obtained by Anderson
[1983] in a completely independent experiment.  Rod
settlement does not appear to affect the results obtained by
Stein et al. [1986] only because they are using discrepancies
that do not retain a unique relation with the direction of
levelling and thus tend to randomize the systematic effects.  In
fact, we observe that our estimates of the refraction effect agree
better with that obtained by Stein et al. [1986] when the other
effects (rod settlement and dH) are taken into account.

It is also just as important to remember that the rod
settlement effect on the average section height difference will
cancel when the number of setups in the forward and backward
runnings are balanced and the levelling is performed in a
procedurally consistent manner.  Any imbalance in the number
of setups or a change in field procedure will result in an
accumulation of the rod settlement effect in the average height
differences.  In practice, field procedures require the number of
setups to be precisely balanced in order to cancel this effect.
The levelling experiment reported on here is not typical as it
was designed with the intention of amplifying the refraction
effect and, consequently, the imbalance in number of setups.

On the other hand, a steady trend between the section
discrepancies and turning points indicates that the settlement
effect is relatively constant.  If this is so, the effect will indeed
cancel in the averaging of the elevation differences.  If the trend
is not well defined, the settlement effect will tend to randomize,
and thus one cannot be sure that it will cancel in the average
elevation difference.  Therefore one should actually look for
this steady trend as a sign that the field procedures are being
performed in a consistent manner and that all is going well.  If
the number of setups is not balanced but the levelling has been
performed consistently, it may even be possible to reduce the
rod settlement effect using an a posteriori estimate of the
settlement effect from a multiple regression analysis.
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