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ABSTRACT

Many software packages used for static GPS surveying
are based only on baseline processing, where the
mathematical correlations between simultaneously
observed baselines are neglected.  Moreover, all possible
baselines, including so-called “trivial” baselines that are
linear combinations of others, are often combined together
in a 3D adjustment.  To date there have been no known
conclusive tests that permit an objective evaluation of the
effect of ignoring these correlations and including trivial
baselines.  Realizing that many GPS users will have
access to only baseline processing software, we
investigate processing strategies that could be used to
provide results equivalent to session processing.  In
principle, session solutions which account for all
mathematical correlations are preferable since they also
allow for orbit improvement, spatial modeling of
atmospheric effects and enable easier ambiguity
resolution.  On the other hand, baseline processing with
all trivial baselines significantly distorts the formal
accuracies by artificially increasing the redundancy in the

model, resulting in overly optimistic covariance matrices.
It is shown that using all possible baseline solutions (with
the covariance matrix scaled by n/2, where n is the
number of simultaneously observing receivers) is
mathematically equivalent to session processing with all
correlations only under certain conditions.  This
equivalence is verified empirically using simulated and
real data.  However, the conditions under which this
equivalence holds are difficult to achieve in practice.

INTRODUCTION

Many software packages used for static GPS surveying
are capable of only baseline processing, where individual
baselines are processed separately.  Consequently the
mathematical correlations between simultaneously
observed baselines are neglected.  Moreover, all possible
baselines, including so-called “trivial” baselines that are
linear combinations of others, are often combined together
in a 3D adjustment.  The emphasis has been put on
producing coordinate values with little regard to providing
objective estimates of the accuracy or precision of the
results.  Realizing that many GPS users will have access
to only baseline processing software, the objective of this
study is to investigate processing strategies that could be
used to provide results that are equivalent to session
processing.  These strategies may then be used to develop
specifications for baseline processing of GPS data.

Because of subtle differences in GPS processing methods
much of the terminology used in the literature can be
confusing.  In this paper we adopt the following
definitions for the various GPS solutions and coordinate
adjustments:

Baseline:  Coordinate vector resulting from any station
pair.

Session:  An observing period of multiple receivers.
Independent baselines:  A set of baselines where no

individual baseline is a linear combination of any
others.

Linearly dependent (trivial) baselines:  Baselines which
are linear combinations of others.

Baseline solution:  Solution from processing a single
baseline.
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Session adjustment or baseline processing:  3D least
squares adjustment of all possible baselines solutions.

Session solution or session processing:  Solution from
simultaneous processing of all independent baselines
with mathematical correlations between baselines.

In principle, only session solutions using all mathematical
correlations are correct.  This approach also allows for
orbit improvement, spatial modeling of atmospheric
effects and more reliable ambiguity resolution which
leads to more realistic accuracy estimates.  Covariance
matrices obtained from such solutions preserve the
correlations among the coordinates estimates thereby
enabling proper integration of GPS results with other
networks.  On the other hand, baseline processing using
all baseline combinations significantly distorts the formal
accuracy estimates by artificially increasing the
redundancy in the model.  This results in overly optimistic
covariance matrices even though the coordinates may be
well determined.

To date there have been very few analyses that permit an
objective evaluation of the effect of ignoring these
correlations and including trivial baselines.  Beutler et al.
(1987), Beck et al. (1989), Hackman et al. (1989) and
Hollmann et al. (1990) show there is little difference in
the coordinate values when correlations are ignored and
all baseline combinations are used.  On the other hand,
Vincenty (1987), Beck et al. (1989), Hollmann et al.
(1990) and Jivall (1992) note that covariance matrices
from such solutions are overly optimistic.  Hollmann et al.
(1990) attribute this to the effect of physical correlations.
Vincenty (1987), Beck et al. (1989) and Jivall (1992),
however,  argue this is caused by including linearly
dependent trivial baselines and recommend scaling the
covariance matrix by a factor of n/2, where n is the
number of simultaneously observing receivers, in order to
compensate for this. Vincenty (1987) and Jivall (1992)
also point out that all  possible trivial baselines must be
included to properly account for the neglect of the
mathematical correlations.

As described in Jivall (1992), one would intuitively
expect that, by including all baseline combinations, the
covariance matrix should be multiplied by the factor n/2
to remove the artificial increase in the number of
baselines.  Including trivial baselines effectively increases
the weight of the independent baselines by the factor n/2
(which comes from the total number of baseline
combinations / number of independent baselines).
However, except for the preliminary tests in Beck et al.
(1989), there have been no empirical analyses of what the
actual scale factor is in practice, how it varies and under
what conditions it holds.  We therefore examine, both
theoretically and empirically, the effects of neglecting
correlations between baselines and using trivial baselines.

In all of our analyses we have estimated all carrier phase
ambiguities to avoid comparing solutions with different
ambiguities resolved.  In general we found that ambiguity
resolution was more difficult in baseline processing than
session processing.

The problem of unrealistic covariance matrices due to
incomplete modeling of all the (physical) effects on GPS
observations is not discussed here.  Such effects produce
so-called physical correlations among the observations.
These correlations tend to be positive, thereby reducing
the mathematically induced correlations.

EQUIVALENCE OF PROCESSING METHODS

The mathematical equivalence of session and baseline
processing can be shown by examining the normal
equations for each type of solution.  Although we use
double difference carrier phase observations in the
following developments, the results are independent of the
differencing method used since all can be shown to be
mathematically equivalent to each other using the
fundamental differencing theorem (see Lindlohr and
Wells, 1985).

Consider a single epoch with n receivers and let CΦ  =

diag(σΦ2) denote the a priori covariance matrix
(uncorrelated) of the carrier phase observations Φ.  The
single differences observations ∇Φ i  and their fully
populated covariance matrix C∇Φi  at a single receiver i
are then

∇Φi   =  S Φi  ,

C∇Φi   =  S CΦi ST  =  σΦ2 S ST .

where S is the between-satellite single difference operator
and the covariance matrix is the same at each receiver.
Similarly, for the session solution the linearly independent
double differences ∆∇ΦI and their covariance matrix CS
are given by

∆∇ΦI  =  DI ∇Φ ,

CS  =  DI C∇Φ DIT .

where DI is the double difference operator that generates
a linearly independent set of double differences from the
single differences and C∇Φ  = diag(C∇Φ1, C∇Φ2 ,..., C∇
Φn) is the single difference covariance matrix for all n
receivers.  Note that CS is fully populated and accounts
for the mathematical correlations between receivers
introduced by the double differencing process.

The least squares parameter estimates δS (coordinates and
possibly ambiguities) and their covariance matrix CδS for
the session solution can be written in terms of the set of
linearly independent double differences as

δS  =  NS–1 uS ,

CδS =  NS–1 ,

where NS is the normal equation matrix and uS is the so-
called constant vector.  (For a review of least squares
theory, see Vaníc˘ek and Krakiwsky, 1986).  Letting AI
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denote the design matrix relating the double differences to
the parameters, we get

NS  =  AIT PS AI ,

uS  =  AIT PS ∆∇ΦI ,

where PS = CS–1 is the correct (fully populated) weight
matrix for the double differences.

In baseline processing, all individual baselines can be
either separately processed (baseline solution) and
subsequently combined in a 3D session adjustment or
processed together as in session processing but without
the correlations between baselines.  These approaches are
equivalent only when all integer ambiguities are
identically resolved.  We use the latter since it is easier to
show the equivalence with session processing.

Letting A B denote the design matrix relating baseline
double differences ∆∇ΦB to the parameters, the normal
equation matrix NB and constant vector uB are given by

δB  =  NB–1 uB ,

CδB =  NB–1 ,

where

NB  =  ABT PB AB ,

uB  =  ABT PB ∆∇ΦB ,

and PB = CB–1 = diag(2C∇Φ1, 2C∇Φ2, ..., 2C∇Φn)–1

is the weight matrix for all baseline double differences
(uncorrelated between baselines).

Partitioning all possible baseline combinations into
linearly independent (subscript I) and dependent
(subscript T) baseline sets, we can rewrite the normal
equations as

NB  =  AIT PI AI  +  ATT PT AT
uB  =  AIT PI ∆∇ΦI  +  ATT PT ∆∇ΦT

where  PI and PT are both block diagonal matrices of the

form diag(2C∇Φ1, 2C∇Φ2, ...)–1.  Realizing that the
trivial baselines are linear combinations of the
independent ones, we can also write

∆∇ΦT  =  T ∆∇ΦI ,
AT  =  T AI ,

where T  is the matrix transforming the independent
baselines into trivial ones.  The normal equations can now
be expressed as

NB  =  AIT PB* AI ,

uB  =  AIT PB* ∆∇ΦI ,

where PB* = (PI + TT PT T).

To show the equivalence of the two approaches we need
to show when PS and PB*

 

 are equivalent.  For example
consider, without loss of generality, taking double
differences with respect to the first receiver in a session.
The double differencing operator for the independent
session baselines will have the form

DS  =  

 


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

 –I   I  0  ...  0 
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 .

The resulting double difference covariance matrix for the
session solution of independent baselines is then

CS  =  
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 .

For baseline processing, we have the double difference
weight matrix

PB*

 

  =  PI + TT PT T ,

where the form of T  depends on the number of receivers
as well as DS.  For 4 receivers and the differencing
scheme above,

T   =  
 



 

 –I     I   0 

 –I   0   I  
  0  –I   I  

The double difference weight matrix is then

PB*

 

  =  

 


 

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2

 C∇Φi–1  –
1
2
 C∇Φi–1  ...  –

1
2
 C∇Φi–1 

 –
1
2
 C∇Φi–1  

n–1
2

 C∇Φi–1  ...  –
1
2
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 :  :    : 

 –
1
2
 C∇Φi–1  –

1
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 C∇Φi–1  ...  
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2
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.

Because the form of T  depends on the differencing
scheme and the numbers of receivers, we numerically
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verified the above form of PB for different differencing
schemes and from 3 to 8 receivers.

From an inspection of the two weight matrices we find
that PS = (2/n)PB*

 

.  The normal equations for both the
session and baseline solution are therefore identical when
the factor 2/n is included in PB*

 

 and thus

δS  =  δB ,

CδS  =  
n
2
 CδB .

For the mathematical equivalence of session and baseline
processing to hold, the following conditions must be
satisfied for baseline processing:

• All possible linear combinations must be processed as
baseline solutions, either individually or together in a
session solution without correlations between
baselines.

• The trivial baselines must be exact linear combinations
of the independent baselines (i.e., all of the same data
is used).

• All possible baseline solutions must be subsequently
combined together in a session adjustment.  The
covariance matrix for each baseline solution must be
scaled by the appropriate n/2 factor   Note that n will
be different for sessions using different numbers of
receivers.  If the same number of receivers is used in
all sessions, only the final network covariance matrix
needs to be scaled by n/2.

• Care must be exercised in the handling of the variance
factor from the individual baseline solutions.  Because
the variance factor is derived from random quantities
(residuals), it will vary slightly from baseline to
baseline which could adversely affect the relative
weighting of baselines in the session adjustment.  To
maintain equivalence with the session solution, the
same variance factor should be used for all baseline
solutions; e.g., a “pooled” variance factor derived from
those for each baseline – i.e., work back to the sum of
squared residuals, accumulate these for all baselines
and divide by the total degrees of freedom for each
session.  Note, however, that the estimated variance
factor determined from the 3D adjustment of the
individual baseline coordinates must not be applied.

Note that the mathematical equivalence holds only when
the ambiguities are identically resolved.

TESTS WITH SIMULATED DATA

The equivalence of session and baseline processing was
tested empirically using simulated GPS observations of an
actual survey of the Ottawa GPS basenet.  The relative
location of the 8 stations in the network is illustrated in
Figure 1.  The baseline lengths ranged from 2 to 150 km.

The simulated data for this network were generated using
the Bernese GPS Software v3.3.  Phase observations were
computed for a single session at each of the 8 stations

883075

883073

883071

833012

882025

883072 833001
883074

50 km
N

Figure 1:  Ottawa GPS basenet.

using a standard deviation of 3 mm and exactly the same
start/stop times.  The duration of the session was 6 hours.
A broadcast ephemeris obtained from an actual GPS
survey of the same network on day 337 (December 3),
1991 was used for the simulation.  No cycle slips or
atmospheric effects were introduced.

Using this data, session solutions were obtained using
station 833001 as the reference receiver for generating the
7 linearly independent baselines.  Individual baseline
solutions were then computed for all possible (28)
baseline combinations.  After removing the variance
factors from each baseline solution, they were combined
in a 3D adjustment (session adjustment).  The variance
factors where also removed from the session solution (for
comparison purposes only).  In both solutions, all double
difference phase ambiguities were estimated.  Similar
session adjustments of baseline solutions were also
computed for different numbers of these stations in order
to check the variation of the n/2 scale factor with the
number of receivers.

The differences between the coordinate estimates for
session and baseline processing are summarized in Table
1.  Clearly the differences between the solutions are only
on the sub-millimeter level as expected for simulated data.
The largest (0.65 mm) occur for the case with 5 receivers.

The covariance matrices are compared in Figure 2 which
depicts the variations in the ratios of all the covariance
matrix elements between session and baseline processing.
The ratio should be equivalent to the scale factor n/2=4.
The means of the ratios agree well with the theoretical n/2
value in all cases except those for 3 and 5 receivers.  We
also observe small variations in the ratios for each
comparison.  The differences are attributed to differences
in the estimated ambiguities.

We also investigated the effect of omitting one and two
baselines from the set of all possible combinations, as is
often done in practice when “outlier” baselines are
detected in the 3D adjustment.  It is important to point
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Table 1:  Comparison of coordinate estimates (session–
baseline) for different numbers of receivers and simulated
data.  Fixed station was removed from comparison.

8 Receivers
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
833012     0.04     0.01    0.00
882025    -0.04     0.15     0.01
883071    -0.05     0.13    -0.00
883072    -0.06     0.06    -0.07
883073    -0.00     0.09     0.09
883074    -0.05     0.13    -0.01
883075    -0.07     0.10    -0.03

Mean  0.02    St.Dev.  0.07

7 Receivers
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
882025    -0.06     0.15     0.01
883071    -0.07     0.03     0.04
883072    -0.05     0.04    -0.09
883073    -0.06     0.05     0.07
883074    -0.08     0.12    -0.01
883075    -0.11     0.09    -0.03

Mean  0.00    St.Dev.  0.08

6 Receivers
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
883071    -0.07    -0.26     0.19
883072    -0.10    -0.26     0.06
883073    -0.08    -0.20     0.26
883074    -0.10    -0.13     0.19
883075    -0.16    -0.18     0.14

Mean  -0.05    St.Dev.  0.17

5 Receivers
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
883072    -0.10     0.52    -0.32
883073    -0.13     0.65    -0.19
883074    -0.16     0.62    -0.21
883075    -0.21     0.56    -0.25

Mean  0.07    St.Dev.  0.39

4 Receivers
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
883073    -0.24     0.07     0.27
883074    -0.28     0.04     0.24
883075    -0.28    -0.03     0.18

Mean  0.00    St.Dev.  0.22

3 Receivers
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
883074     0.26     0.32    -0.03
883075     0.25     0.18    -0.03

Mean  0.16    St.Dev.  0.15

Table 2:  Comparison of coordinate estimates (session–
baseline)  for simulated data with 1 and 2 baselines
omitted from baseline solutions.  Fixed station was
removed from comparison.

5 Receivers – No baseline omitted
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
883072    -0.10     0.52    -0.32
883073    -0.13     0.65    -0.19
883074    -0.16     0.62    -0.21
883075    -0.21     0.56    -0.25

Mean  0.07    St.Dev.  0.39

5 Receivers – 1 baseline omitted
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
883072    -0.10     0.52    -0.32
883073    -0.13     0.65    -0.19
883074    -0.09     0.62    -0.23
883075    -0.28     0.57    -0.23

Mean  0.07    St.Dev.  0.39

5 Receivers – 2 baselines omitted
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
883072    -0.10     0.52    -0.32
883073    -0.05     0.67    -0.19
883074    -0.24     0.60    -0.21
883075    -0.25     0.63    -0.33

Mean  0.06    St.Dev.  0.41

out, however, that omitting any of the baselines
invalidates any equivalence with session processing.  The
results of the comparison of session processing (with all
independent baselines) and baseline processing (with one
and two baselines omitted) are summarized in Table 2 and
Figure 3.

As expected with simulated data, the coordinates are
practically unaffected.  On other hand, the ratios of the
covariance matrix elements are shifted further from the
expected theoretical n/2 value and also display much
larger variations – as much as a factor of 4 when two
baselines are omitted!  Clearly the covariance matrix is
greatly affected by the omission of baselines and therefore
this should always be avoided.

TESTS WITH REAL DATA

Tests were also performed with real GPS data collected
on the same Ottawa GPS basenet but using only 5
stations.  The survey was performed in 1991 by the
 Canadian Mapping and Charting Establishment.  One 6
hour session was observed on each of days 337
(December 3) to 340 (December 6).  Five new Ashtech
P12 P-code receivers were used on all days except the
first (when only 4 were used).
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Figure 2:  Frequency distributions of ratios of covariance matrix elements (session/baseline) for simulated data.
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Figure 3:  Frequency distributions of ratios of covariance matrix elements (session/baseline) for simulated data with 1 and 2
baselines omitted from baseline solutions.

The data were processed using the Bernese GPS software
with the same fixed station, processing options and
procedures that were used for the simulations.  However,
not all of the five receivers started and stopped recording
data at exactly the same time.  At three stations, about 15-
20 minutes of additional data was collected.  Session and
baseline solutions were computed for each day.  All
carrier phase ambiguities were estimated.

The differences between the coordinate estimates from
session and baseline processing are summarized in Table
3.  Clearly, the differences are much larger than for the
simulated data with the largest being 1 to 2 cm.
Nevertheless, the mean of the discrepancies is practically
zero (less than 0.2 mm) for all days.  These discrepancies
are attributed to differences in the estimated ambiguities.

The covariance matrices are compared in Figure 4, again
in terms of variations in the ratios of the covariance
matrix elements for session and baseline processing.  The
means of the ratios agree very well with the theoretical
n/2 value for all days except 337 (with 4 receivers instead
of 5).  Similar to our simulations, we again see small
variations in the ratios for each comparison.  These
variations are also attributed to differences in the
estimated ambiguities.

We also investigated the effect of omitting one and two
baselines from the set of all possible combinations in the
3D adjustment.  We emphasize that omitting any of the
baselines invalidates any equivalence with session
processing.  The results of the comparison of session
processing (with all independent baselines) and baseline
processing (with one and two baselines omitted) are
summarized in Table 4 and Figure 5.  This small sample
shows effects up to 7 mm, which would vary with respect
to baseline removed, baseline length, conditions, etc.  In
addition, the session/baseline ratios of the covariance
matrix elements again exhibited many values 4 to 5.5
times larger than the theoretical one!  This caused the
mean to be shifted further from the theoretical value.
Clearly the covariance matrix is adversely affected by the
omission of baselines.

Although solutions were also computed with ambiguities
fixed, many more ambiguities were unresolved in the
baseline processing mode than for session processing.
This resulted in large differences between the solutions
which overwhelmed any due to the baseline processing.
For this reason we didn't make any comparisons among
these solutions.
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Table 3:  Comparison of coordinate estimates (session–
baseline) for real data.  Fixed station was removed from
comparison.

Day 337 – 4 Receivers
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
882025     6.23   -19.79     7.62
883072    11.45     1.87     0.72
883073   -11.73   -11.63    16.99

Mean  0.19    St.Dev.  12.17

Day 338 – 5 Receivers
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
882025     5.74   -17.53     3.87
883072     9.39     7.07    -5.20
883073   -13.39    -3.57     7.39
883074    -1.38    12.33    -6.69

Mean  -0.17    St.Dev.  9.37

Day 339 – 5 Receivers
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
882025     6.29   -14.77     2.44
883072    12.36     7.52    -4.46
883073   -20.39    -7.57     6.39
883074     2.21    13.33    -3.92

Mean  -0.05    St.Dev.  10.47

Day 340 – 5 Receivers
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
882025     5.72   -17.66     3.90
883072    10.05     7.54    -6.17
883073   -13.76    -3.69     7.93
883074    -1.22    12.79    -7.13

Mean  -0.14    St.Dev.  9.71

CONCLUSIONS AND RECOMMENDATIONS

It has been shown that session and baseline processing of
GPS data are mathematically equivalent when the
covariance matrix for baseline processing is scaled by the
factor n/2, where n is the number of receivers used in any
observing session.  The requirements for achieving this
equivalence are that (i) all possible baselines (including
trivial ones) be used in a 3D session adjustment, (ii) the
same variance factor (such as a “pooled” estimate) must
be used in each individual baseline solution, (iii) the
trivial baselines must be exact linear combinations of the
independent baselines, and (iv) identical integer
ambiguities are resolved in both session and baseline
solutions.

These conditions for equivalence of session and baseline
processing (especially identical ambiguity resolution) can
be difficult to achieve in practice.  Nevertheless, the
results show that an essentially equivalent covariance
matrix can be determined from baseline processing,

Table 4:  Comparison of coordinate estimates (session–
baseline)  for real data with 1 and 2 baselines omitted
from baseline solutions.  Fixed station was removed from
comparison.

Day 338 – 5 Receivers – No baselines omitted
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
882025     5.74   -17.53     3.87
883072     9.38     7.07    -5.20
883073   -13.39    -3.57     7.39
883074    -1.38    12.33    -6.69

Mean  -0.17    St.Dev.  9.37

Day 338 – 5 Receivers – 1 baseline omitted
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
882025     5.74   -17.53     3.87
883072     9.38     7.07    -5.20
883073   -11.89    -0.25     4.40
883074    -2.82     9.31    -3.90

Mean  -0.15    St.Dev.  8.48

Day 338 – 5 Receivers – 2 baselines omitted
Station ∆X (mm) ∆Y (mm) ∆Z (mm)
882025     5.74   -17.56     3.85
883072     2.14     7.51    -6.07
883073    -8.85    -3.10     7.92
883074     1.40    12.02    -6.39

Mean  -0.12    St.Dev.  8.48

although small coordinate differences of up to 5 mm can
result.  For many applications this would be significant.

When using baseline processing, care must be taken to
ensure that the covariance matrices are scaled by the
proper n/2 factor.  When different numbers of receivers
are used in different sessions, the baselines from each
session will need to be scaled accordingly before
combining them in a session adjustment.

Care must also be exercised when dealing with the
different variance factors determined from the GPS
baseline solutions and the 3D session adjustment.  To
achieve equivalence of the covariance matrices, a variance
factor compatible with that used for the session solution
should be used (e.g., a “pooled” estimate).  The variance
factor from the 3D session adjustments of the individual
baseline solutions should never be used.

Although we have shown that session and baseline
processing are equivalent under certain conditions,
session processing has its advantages.  In particular it
allows for orbit improvement, spatial modeling of
atmospheric effects, and enables easier ambiguity
resolution.  On the other hand, a problem with baseline
processing is that some baselines may not have enough
data available to resolve the ambiguities, especially on
longer lines.
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Figure 4:  Frequency distribution of ratios of covariance matrix elements (session/baseline) for real data.

It is important to emphasize that all possible baselines,
including linearly dependent (trivial) ones, must be used
in the 3D adjustment of the independent baseline solutions
to maintain equivalence with session processing.  We
have found that omitting a baseline adversely affects both
the coordinates and their covariance matrix.  If, in a 3D
session adjustment of all baseline solutions, one of the
baselines is considered to be a outlier, then the data
should be inspected on the receiver level.  If it is found
that part of the data is bad, then all baselines using the
receiver should be reprocessed without this data.  If for
some reason they can't be reprocessed, then all baselines
using the receiver should be omitted from the session
adjustment.  This would then be equivalent to session
processing.
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